Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Regression And Fitting On Manifold Valued Data
Download Regression And Fitting On Manifold Valued Data full books in PDF, epub, and Kindle. Read online Regression And Fitting On Manifold Valued Data ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Regression and Fitting on Manifold-valued Data by : Ines Adouani
Download or read book Regression and Fitting on Manifold-valued Data written by Ines Adouani and published by Springer Nature. This book was released on with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Regression and Fitting Methods on Manifold-valued Data by : Ines Adouani
Download or read book Regression and Fitting Methods on Manifold-valued Data written by Ines Adouani and published by Springer. This book was released on 2024-10-28 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces in a constructive manner a general framework for regression and fitting methods for many applications and tasks involving data on manifolds. The methodology has important and varied applications in machine learning, medicine, robotics, biology, computer vision, human biometrics, nanomanufacturing, signal processing, and image analysis, etc. The first chapter gives motivation examples, a wide range of applications, raised challenges, raised challenges, and some concerns. The second chapter gives a comprehensive exploration and step-by-step illustrations for Euclidean cases. Another dedicated chapter covers the geometric tools needed for each manifold and provides expressions and key notions for any application for manifold-valued data. All loss functions and optimization methods are given as algorithms and can be easily implemented. In particular, many popular manifolds are considered with derived and specific formulations. The same philosophy is used in all chapters and all novelties are illustrated with intuitive examples. Additionally, each chapter includes simulations and experiments on real-world problems for understanding and potential extensions for a wide range of applications.
Book Synopsis Information Processing in Medical Imaging by : Marc Niethammer
Download or read book Information Processing in Medical Imaging written by Marc Niethammer and published by Springer. This book was released on 2017-06-06 with total page 691 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the proceedings of the 25th International Conference on Information Processing in Medical Imaging, IPMI 2017, held at the Appalachian State University, Boon, NC, USA, in June 2017. The 53 full papers presented in this volume were carefully reviewed and selected from 147 submissions. They were organized in topical sections named: analysis on manifolds; shape analysis; disease diagnosis/progression; brain networks an connectivity; diffusion imaging; quantitative imaging; imaging genomics; image registration; segmentation; general image analysis.
Book Synopsis Riemannian Geometric Statistics in Medical Image Analysis by : Xavier Pennec
Download or read book Riemannian Geometric Statistics in Medical Image Analysis written by Xavier Pennec and published by Academic Press. This book was released on 2019-09-04 with total page 634 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past 15 years, there has been a growing need in the medical image computing community for principled methods to process nonlinear geometric data. Riemannian geometry has emerged as one of the most powerful mathematical and computational frameworks for analyzing such data. Riemannian Geometric Statistics in Medical Image Analysis is a complete reference on statistics on Riemannian manifolds and more general nonlinear spaces with applications in medical image analysis. It provides an introduction to the core methodology followed by a presentation of state-of-the-art methods. Beyond medical image computing, the methods described in this book may also apply to other domains such as signal processing, computer vision, geometric deep learning, and other domains where statistics on geometric features appear. As such, the presented core methodology takes its place in the field of geometric statistics, the statistical analysis of data being elements of nonlinear geometric spaces. The foundational material and the advanced techniques presented in the later parts of the book can be useful in domains outside medical imaging and present important applications of geometric statistics methodology Content includes: The foundations of Riemannian geometric methods for statistics on manifolds with emphasis on concepts rather than on proofs Applications of statistics on manifolds and shape spaces in medical image computing Diffeomorphic deformations and their applications As the methods described apply to domains such as signal processing (radar signal processing and brain computer interaction), computer vision (object and face recognition), and other domains where statistics of geometric features appear, this book is suitable for researchers and graduate students in medical imaging, engineering and computer science.
Book Synopsis Statistical Shape Analysis by : Ian L. Dryden
Download or read book Statistical Shape Analysis written by Ian L. Dryden and published by John Wiley & Sons. This book was released on 2016-07-08 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: A thoroughly revised and updated edition of this introduction to modern statistical methods for shape analysis Shape analysis is an important tool in the many disciplines where objects are compared using geometrical features. Examples include comparing brain shape in schizophrenia; investigating protein molecules in bioinformatics; and describing growth of organisms in biology. This book is a significant update of the highly-regarded `Statistical Shape Analysis’ by the same authors. The new edition lays the foundations of landmark shape analysis, including geometrical concepts and statistical techniques, and extends to include analysis of curves, surfaces, images and other types of object data. Key definitions and concepts are discussed throughout, and the relative merits of different approaches are presented. The authors have included substantial new material on recent statistical developments and offer numerous examples throughout the text. Concepts are introduced in an accessible manner, while retaining sufficient detail for more specialist statisticians to appreciate the challenges and opportunities of this new field. Computer code has been included for instructional use, along with exercises to enable readers to implement the applications themselves in R and to follow the key ideas by hands-on analysis. Statistical Shape Analysis: with Applications in R will offer a valuable introduction to this fast-moving research area for statisticians and other applied scientists working in diverse areas, including archaeology, bioinformatics, biology, chemistry, computer science, medicine, morphometics and image analysis .
Book Synopsis Innovations for Shape Analysis by : Michael Breuß
Download or read book Innovations for Shape Analysis written by Michael Breuß and published by Springer Science & Business Media. This book was released on 2013-04-04 with total page 510 pages. Available in PDF, EPUB and Kindle. Book excerpt: The concept of 'shape' is at the heart of image processing and computer vision, yet researchers still have some way to go to replicate the human brain's ability to extrapolate meaning from the most basic of outlines. This volume reflects the advances of the last decade, which have also opened up tough new challenges in image processing. Today's applications require flexible models as well as efficient, mathematically justified algorithms that allow data processing within an acceptable timeframe. Examining important topics in continuous-scale and discrete modeling, as well as in modern algorithms, the book is the product of a key seminar focused on innovations in the field. It is a thorough introduction to the latest technology, especially given the tutorial style of a number of chapters. It also succeeds in identifying promising avenues for future research. The topics covered include mathematical morphology, skeletonization, statistical shape modeling, continuous-scale shape models such as partial differential equations and the theory of discrete shape descriptors. Some authors highlight new areas of enquiry such as partite skeletons, multi-component shapes, deformable shape models, and the use of distance fields. Combining the latest theoretical analysis with cutting-edge applications, this book will attract both academics and engineers.
Download or read book CONTROLO 2022 written by Luís Brito Palma and published by Springer Nature. This book was released on 2022-07-02 with total page 750 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a timely and comprehensive snapshot of research and developments in the fields of dynamic systems and control engineering. Covering a wide range of theoretical and practical issues, the contributions describes a number of different control approaches, such as PID control, adaptive control, nonlinear systems and control, intelligent monitoring and control based on fuzzy and neural systems, robust control systems, and real time control, among others. Sensors and actuators, measurement systems, renewable energy systems, aeronautic and aerospace systems as well as industrial control and automation, are also comprehensively covered. Based on the proceedings of the 15th APCA International Conference on Automatic Control and Soft Computing, held on July 6-8, 2022, in Caparica, Portugal, the book offers a timely and thoroughly survey of the latest research in the fields of dynamic systems and automatic control engineering, and a source of inspiration for researchers and professionals worldwide.
Book Synopsis Riemannian Computing in Computer Vision by : Pavan K. Turaga
Download or read book Riemannian Computing in Computer Vision written by Pavan K. Turaga and published by Springer. This book was released on 2015-11-09 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a comprehensive treatise on Riemannian geometric computations and related statistical inferences in several computer vision problems. This edited volume includes chapter contributions from leading figures in the field of computer vision who are applying Riemannian geometric approaches in problems such as face recognition, activity recognition, object detection, biomedical image analysis, and structure-from-motion. Some of the mathematical entities that necessitate a geometric analysis include rotation matrices (e.g. in modeling camera motion), stick figures (e.g. for activity recognition), subspace comparisons (e.g. in face recognition), symmetric positive-definite matrices (e.g. in diffusion tensor imaging), and function-spaces (e.g. in studying shapes of closed contours).
Book Synopsis Data Preparation for Data Mining by : Dorian Pyle
Download or read book Data Preparation for Data Mining written by Dorian Pyle and published by Morgan Kaufmann. This book was released on 1999-03-22 with total page 566 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the importance of clean, well-structured data as the first step to successful data mining. It shows how data should be prepared prior to mining in order to maximize mining performance.
Book Synopsis Information Processing in Medical Imaging by : Alejandro Frangi
Download or read book Information Processing in Medical Imaging written by Alejandro Frangi and published by Springer Nature. This book was released on 2023-06-07 with total page 836 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the proceedings of the 28th International Conference on Information Processing in Medical Imaging, IPMI 2023, which took place in San Carlos de Bariloche, Argentina, in June 2023. The 63 full papers presented in this volume were carefully reviewed and selected from 169 submissions. They were organized in topical sections as follows: biomarkers; brain connectomics; computer-aided diagnosis/surgery; domain adaptation; geometric deep learning; groupwise atlasing; harmonization; federated learning; image synthesis; image enhancement; multimodal learning; registration; segmentation; self supervised learning; surface analysis and segmentation.
Book Synopsis Geometric Science of Information by : Frank Nielsen
Download or read book Geometric Science of Information written by Frank Nielsen and published by Springer. This book was released on 2017-10-30 with total page 877 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the Third International Conference on Geometric Science of Information, GSI 2017, held in Paris, France, in November 2017. The 101 full papers presented were carefully reviewed and selected from 113 submissions and are organized into the following subjects: statistics on non-linear data; shape space; optimal transport and applications: image processing; optimal transport and applications: signal processing; statistical manifold and hessian information geometry; monotone embedding in information geometry; information structure in neuroscience; geometric robotics and tracking; geometric mechanics and robotics; stochastic geometric mechanics and Lie group thermodynamics; probability on Riemannian manifolds; divergence geometry; non-parametric information geometry; optimization on manifold; computational information geometry; probability density estimation; session geometry of tensor-valued data; geodesic methods with constraints; applications of distance geometry.
Book Synopsis Medical Image Computing and Computer-Assisted Intervention -- MICCAI 2009 by : Guang-Zhong Yang
Download or read book Medical Image Computing and Computer-Assisted Intervention -- MICCAI 2009 written by Guang-Zhong Yang and published by Springer Science & Business Media. This book was released on 2009-09-07 with total page 1168 pages. Available in PDF, EPUB and Kindle. Book excerpt: The two-volume set LNCS 5761 and LNCS 5762 constitute the refereed proceedings of the 12th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2009, held in London, UK, in September 2009. Based on rigorous peer reviews, the program committee carefully selected 259 revised papers from 804 submissions for presentation in two volumes. The first volume includes 125 papers divided in topical sections on cardiovascular image guided intervention and robotics; surgical navigation and tissue interaction; intra-operative imaging and endoscopic navigation; motion modeling and image formation; image registration; modeling and segmentation; image segmentation and classification; segmentation and atlas based techniques; neuroimage analysis; surgical navigation and robotics; image registration; and neuroimage analysis: structure and function.
Book Synopsis Shape in Medical Imaging by : Martin Reuter
Download or read book Shape in Medical Imaging written by Martin Reuter and published by Springer. This book was released on 2018-11-22 with total page 319 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the proceedings of the Workshop on Shape in Medical Imaging, ShapeMI 2018, held in conjunction with the 21st International Conference on Medical Image Computing, MICCAI 2018, in Granada, Spain, in September 2018. The 26 full papers and 2 short papers presented were carefully reviewed and selected for inclusion in this volume. The papers discuss novel approaches and applications in shape and geometry processing and their use in research and clinical studies and explore novel, cutting-edge theoretical methods and their usefulness for medical applications, e.g., from the fields of geometric learning or spectral shape analysis.
Book Synopsis Medical Image Computing and Computer-Assisted Intervention - MICCAI 2008 by : Dimitris N. Metaxas
Download or read book Medical Image Computing and Computer-Assisted Intervention - MICCAI 2008 written by Dimitris N. Metaxas and published by Springer Science & Business Media. This book was released on 2008 with total page 1136 pages. Available in PDF, EPUB and Kindle. Book excerpt: Annotation The two-volume set LNCS 5241 and LNCS 5242 constitute the refereed proceedings of the 11th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2008, held in New York, NY, USA, in September 2008.The program committee carefully selected 258 revised papers from numerous submissions for presentation in two volumes, based on rigorous peer reviews. The first volume includes 127 papers related to medical image computing, segmentation, shape and statistics analysis, modeling, motion tracking and compensation, as well as registration. The second volume contains 131 contributions related to robotics and interventions, statistical analysis, segmentation, intervention, modeling, and registration.
Book Synopsis Handbook of Variational Methods for Nonlinear Geometric Data by : Philipp Grohs
Download or read book Handbook of Variational Methods for Nonlinear Geometric Data written by Philipp Grohs and published by Springer Nature. This book was released on 2020-04-03 with total page 703 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers different, current research directions in the context of variational methods for non-linear geometric data. Each chapter is authored by leading experts in the respective discipline and provides an introduction, an overview and a description of the current state of the art. Non-linear geometric data arises in various applications in science and engineering. Examples of nonlinear data spaces are diverse and include, for instance, nonlinear spaces of matrices, spaces of curves, shapes as well as manifolds of probability measures. Applications can be found in biology, medicine, product engineering, geography and computer vision for instance. Variational methods on the other hand have evolved to being amongst the most powerful tools for applied mathematics. They involve techniques from various branches of mathematics such as statistics, modeling, optimization, numerical mathematics and analysis. The vast majority of research on variational methods, however, is focused on data in linear spaces. Variational methods for non-linear data is currently an emerging research topic. As a result, and since such methods involve various branches of mathematics, there is a plethora of different, recent approaches dealing with different aspects of variational methods for nonlinear geometric data. Research results are rather scattered and appear in journals of different mathematical communities. The main purpose of the book is to account for that by providing, for the first time, a comprehensive collection of different research directions and existing approaches in this context. It is organized in a way that leading researchers from the different fields provide an introductory overview of recent research directions in their respective discipline. As such, the book is a unique reference work for both newcomers in the field of variational methods for non-linear geometric data, as well as for established experts that aim at to exploit new research directions or collaborations. Chapter 9 of this book is available open access under a CC BY 4.0 license at link.springer.com.
Book Synopsis Rabi N. Bhattacharya by : Manfred Denker
Download or read book Rabi N. Bhattacharya written by Manfred Denker and published by Birkhäuser. This book was released on 2016-06-30 with total page 717 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents some of the most influential papers published by Rabi N. Bhattacharya, along with commentaries from international experts, demonstrating his knowledge, insight, and influence in the field of probability and its applications. For more than three decades, Bhattacharya has made significant contributions in areas ranging from theoretical statistics via analytical probability theory, Markov processes, and random dynamics to applied topics in statistics, economics, and geophysics. Selected reprints of Bhattacharya’s papers are divided into three sections: Modes of Approximation, Large Times for Markov Processes, and Stochastic Foundations in Applied Sciences. The accompanying articles by the contributing authors not only help to position his work in the context of other achievements, but also provide a unique assessment of the state of their individual fields, both historically and for the next generation of researchers. Rabi N. Bhattacharya: Selected Papers will be a valuable resource for young researchers entering the diverse areas of study to which Bhattacharya has contributed. Established researchers will also appreciate this work as an account of both past and present developments and challenges for the future.
Book Synopsis Geostatistical Functional Data Analysis by : Jorge Mateu
Download or read book Geostatistical Functional Data Analysis written by Jorge Mateu and published by John Wiley & Sons. This book was released on 2021-11-16 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geostatistical Functional Data Analysis Explore the intersection between geostatistics and functional data analysis with this insightful new reference Geostatistical Functional Data Analysis presents a unified approach to modelling functional data when spatial and spatio-temporal correlations are present. The Editors link together the wide research areas of geostatistics and functional data analysis to provide the reader with a new area called geostatistical functional data analysis that will bring new insights and new open questions to researchers coming from both scientific fields. This book provides a complete and up-to-date account to deal with functional data that is spatially correlated, but also includes the most innovative developments in different open avenues in this field. Containing contributions from leading experts in the field, this practical guide provides readers with the necessary tools to employ and adapt classic statistical techniques to handle spatial regression. The book also includes: A thorough introduction to the spatial kriging methodology when working with functions A detailed exposition of more classical statistical techniques adapted to the functional case and extended to handle spatial correlations Practical discussions of ANOVA, regression, and clustering methods to explore spatial correlation in a collection of curves sampled in a region In-depth explorations of the similarities and differences between spatio-temporal data analysis and functional data analysis Aimed at mathematicians, statisticians, postgraduate students, and researchers involved in the analysis of functional and spatial data, Geostatistical Functional Data Analysis will also prove to be a powerful addition to the libraries of geoscientists, environmental scientists, and economists seeking insightful new knowledge and questions at the interface of geostatistics and functional data analysis.