Reduced Order Methods for Modeling and Computational Reduction

Download Reduced Order Methods for Modeling and Computational Reduction PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319020900
Total Pages : 338 pages
Book Rating : 4.3/5 (19 download)

DOWNLOAD NOW!


Book Synopsis Reduced Order Methods for Modeling and Computational Reduction by : Alfio Quarteroni

Download or read book Reduced Order Methods for Modeling and Computational Reduction written by Alfio Quarteroni and published by Springer. This book was released on 2014-06-05 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph addresses the state of the art of reduced order methods for modeling and computational reduction of complex parametrized systems, governed by ordinary and/or partial differential equations, with a special emphasis on real time computing techniques and applications in computational mechanics, bioengineering and computer graphics. Several topics are covered, including: design, optimization, and control theory in real-time with applications in engineering; data assimilation, geometry registration, and parameter estimation with special attention to real-time computing in biomedical engineering and computational physics; real-time visualization of physics-based simulations in computer science; the treatment of high-dimensional problems in state space, physical space, or parameter space; the interactions between different model reduction and dimensionality reduction approaches; the development of general error estimation frameworks which take into account both model and discretization effects. This book is primarily addressed to computational scientists interested in computational reduction techniques for large scale differential problems.

Model Order Reduction: Theory, Research Aspects and Applications

Download Model Order Reduction: Theory, Research Aspects and Applications PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540788417
Total Pages : 471 pages
Book Rating : 4.5/5 (47 download)

DOWNLOAD NOW!


Book Synopsis Model Order Reduction: Theory, Research Aspects and Applications by : Wilhelmus H. Schilders

Download or read book Model Order Reduction: Theory, Research Aspects and Applications written by Wilhelmus H. Schilders and published by Springer Science & Business Media. This book was released on 2008-08-27 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: The idea for this book originated during the workshop “Model order reduction, coupled problems and optimization” held at the Lorentz Center in Leiden from S- tember 19–23, 2005. During one of the discussion sessions, it became clear that a book describing the state of the art in model order reduction, starting from the very basics and containing an overview of all relevant techniques, would be of great use for students, young researchers starting in the ?eld, and experienced researchers. The observation that most of the theory on model order reduction is scattered over many good papers, making it dif?cult to ?nd a good starting point, was supported by most of the participants. Moreover, most of the speakers at the workshop were willing to contribute to the book that is now in front of you. The goal of this book, as de?ned during the discussion sessions at the workshop, is three-fold: ?rst, it should describe the basics of model order reduction. Second, both general and more specialized model order reduction techniques for linear and nonlinear systems should be covered, including the use of several related numerical techniques. Third, the use of model order reduction techniques in practical appli- tions and current research aspects should be discussed. We have organized the book according to these goals. In Part I, the rationale behind model order reduction is explained, and an overview of the most common methods is described.

Model Order Reduction Techniques with Applications in Finite Element Analysis

Download Model Order Reduction Techniques with Applications in Finite Element Analysis PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1447138279
Total Pages : 379 pages
Book Rating : 4.4/5 (471 download)

DOWNLOAD NOW!


Book Synopsis Model Order Reduction Techniques with Applications in Finite Element Analysis by : Zu-Qing Qu

Download or read book Model Order Reduction Techniques with Applications in Finite Element Analysis written by Zu-Qing Qu and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 379 pages. Available in PDF, EPUB and Kindle. Book excerpt: Despite the continued rapid advance in computing speed and memory the increase in the complexity of models used by engineers persists in outpacing them. Even where there is access to the latest hardware, simulations are often extremely computationally intensive and time-consuming when full-blown models are under consideration. The need to reduce the computational cost involved when dealing with high-order/many-degree-of-freedom models can be offset by adroit computation. In this light, model-reduction methods have become a major goal of simulation and modeling research. Model reduction can also ameliorate problems in the correlation of widely used finite-element analyses and test analysis models produced by excessive system complexity. Model Order Reduction Techniques explains and compares such methods focusing mainly on recent work in dynamic condensation techniques: - Compares the effectiveness of static, exact, dynamic, SEREP and iterative-dynamic condensation techniques in producing valid reduced-order models; - Shows how frequency shifting and the number of degrees of freedom affect the desirability and accuracy of using dynamic condensation; - Answers the challenges involved in dealing with undamped and non-classically damped models; - Requires little more than first-engineering-degree mathematics and highlights important points with instructive examples. Academics working in research on structural dynamics, MEMS, vibration, finite elements and other computational methods in mechanical, aerospace and structural engineering will find Model Order Reduction Techniques of great interest while it is also an excellent resource for researchers working on commercial finite-element-related software such as ANSYS and Nastran.

Reduced Basis Methods for Partial Differential Equations

Download Reduced Basis Methods for Partial Differential Equations PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319154311
Total Pages : 305 pages
Book Rating : 4.3/5 (191 download)

DOWNLOAD NOW!


Book Synopsis Reduced Basis Methods for Partial Differential Equations by : Alfio Quarteroni

Download or read book Reduced Basis Methods for Partial Differential Equations written by Alfio Quarteroni and published by Springer. This book was released on 2015-08-19 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a basic introduction to reduced basis (RB) methods for problems involving the repeated solution of partial differential equations (PDEs) arising from engineering and applied sciences, such as PDEs depending on several parameters and PDE-constrained optimization. The book presents a general mathematical formulation of RB methods, analyzes their fundamental theoretical properties, discusses the related algorithmic and implementation aspects, and highlights their built-in algebraic and geometric structures. More specifically, the authors discuss alternative strategies for constructing accurate RB spaces using greedy algorithms and proper orthogonal decomposition techniques, investigate their approximation properties and analyze offline-online decomposition strategies aimed at the reduction of computational complexity. Furthermore, they carry out both a priori and a posteriori error analysis. The whole mathematical presentation is made more stimulating by the use of representative examples of applicative interest in the context of both linear and nonlinear PDEs. Moreover, the inclusion of many pseudocodes allows the reader to easily implement the algorithms illustrated throughout the text. The book will be ideal for upper undergraduate students and, more generally, people interested in scientific computing. All these pseudocodes are in fact implemented in a MATLAB package that is freely available at https://github.com/redbkit

Model Order Reduction Techniques with Applications in Electrical Engineering

Download Model Order Reduction Techniques with Applications in Electrical Engineering PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1447131983
Total Pages : 242 pages
Book Rating : 4.4/5 (471 download)

DOWNLOAD NOW!


Book Synopsis Model Order Reduction Techniques with Applications in Electrical Engineering by : L. Fortuna

Download or read book Model Order Reduction Techniques with Applications in Electrical Engineering written by L. Fortuna and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: Model Order Reduction Techniqes focuses on model reduction problems with particular applications in electrical engineering. Starting with a clear outline of the technique and their wide methodological background, central topics are introduced including mathematical tools, physical processes, numerical computing experience, software developments and knowledge of system theory. Several model reduction algorithms are then discussed. The aim of this work is to give the reader an overview of reduced-order model design and an operative guide. Particular attention is given to providing basic concepts for building expert systems for model reducution.

Interpolatory Methods for Model Reduction

Download Interpolatory Methods for Model Reduction PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 1611976081
Total Pages : 245 pages
Book Rating : 4.6/5 (119 download)

DOWNLOAD NOW!


Book Synopsis Interpolatory Methods for Model Reduction by : A. C. Antoulas

Download or read book Interpolatory Methods for Model Reduction written by A. C. Antoulas and published by SIAM. This book was released on 2020-01-13 with total page 245 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dynamical systems are a principal tool in the modeling, prediction, and control of a wide range of complex phenomena. As the need for improved accuracy leads to larger and more complex dynamical systems, direct simulation often becomes the only available strategy for accurate prediction or control, inevitably creating a considerable burden on computational resources. This is the main context where one considers model reduction, seeking to replace large systems of coupled differential and algebraic equations that constitute high fidelity system models with substantially fewer equations that are crafted to control the loss of fidelity that order reduction may induce in the system response. Interpolatory methods are among the most widely used model reduction techniques, and Interpolatory Methods for Model Reduction is the first comprehensive analysis of this approach available in a single, extensive resource. It introduces state-of-the-art methods reflecting significant developments over the past two decades, covering both classical projection frameworks for model reduction and data-driven, nonintrusive frameworks. This textbook is appropriate for a wide audience of engineers and other scientists working in the general areas of large-scale dynamical systems and data-driven modeling of dynamics.

Data-Driven Science and Engineering

Download Data-Driven Science and Engineering PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1009098489
Total Pages : 615 pages
Book Rating : 4.0/5 (9 download)

DOWNLOAD NOW!


Book Synopsis Data-Driven Science and Engineering by : Steven L. Brunton

Download or read book Data-Driven Science and Engineering written by Steven L. Brunton and published by Cambridge University Press. This book was released on 2022-05-05 with total page 615 pages. Available in PDF, EPUB and Kindle. Book excerpt: A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.

Model Reduction and Approximation

Download Model Reduction and Approximation PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 161197481X
Total Pages : 421 pages
Book Rating : 4.6/5 (119 download)

DOWNLOAD NOW!


Book Synopsis Model Reduction and Approximation by : Peter Benner

Download or read book Model Reduction and Approximation written by Peter Benner and published by SIAM. This book was released on 2017-07-06 with total page 421 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many physical, chemical, biomedical, and technical processes can be described by partial differential equations or dynamical systems. In spite of increasing computational capacities, many problems are of such high complexity that they are solvable only with severe simplifications, and the design of efficient numerical schemes remains a central research challenge. This book presents a tutorial introduction to recent developments in mathematical methods for model reduction and approximation of complex systems. Model Reduction and Approximation: Theory and Algorithms contains three parts that cover (I) sampling-based methods, such as the reduced basis method and proper orthogonal decomposition, (II) approximation of high-dimensional problems by low-rank tensor techniques, and (III) system-theoretic methods, such as balanced truncation, interpolatory methods, and the Loewner framework. It is tutorial in nature, giving an accessible introduction to state-of-the-art model reduction and approximation methods. It also covers a wide range of methods drawn from typically distinct communities (sampling based, tensor based, system-theoretic).?? This book is intended for researchers interested in model reduction and approximation, particularly graduate students and young researchers.

Certified Reduced Basis Methods for Parametrized Partial Differential Equations

Download Certified Reduced Basis Methods for Parametrized Partial Differential Equations PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319224700
Total Pages : 139 pages
Book Rating : 4.3/5 (192 download)

DOWNLOAD NOW!


Book Synopsis Certified Reduced Basis Methods for Parametrized Partial Differential Equations by : Jan S Hesthaven

Download or read book Certified Reduced Basis Methods for Parametrized Partial Differential Equations written by Jan S Hesthaven and published by Springer. This book was released on 2015-08-20 with total page 139 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a thorough introduction to the mathematical and algorithmic aspects of certified reduced basis methods for parametrized partial differential equations. Central aspects ranging from model construction, error estimation and computational efficiency to empirical interpolation methods are discussed in detail for coercive problems. More advanced aspects associated with time-dependent problems, non-compliant and non-coercive problems and applications with geometric variation are also discussed as examples.

System- and Data-Driven Methods and Algorithms

Download System- and Data-Driven Methods and Algorithms PDF Online Free

Author :
Publisher : Walter de Gruyter GmbH & Co KG
ISBN 13 : 3110497719
Total Pages : 346 pages
Book Rating : 4.1/5 (14 download)

DOWNLOAD NOW!


Book Synopsis System- and Data-Driven Methods and Algorithms by : Peter Benner

Download or read book System- and Data-Driven Methods and Algorithms written by Peter Benner and published by Walter de Gruyter GmbH & Co KG. This book was released on 2021-11-08 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: An increasing complexity of models used to predict real-world systems leads to the need for algorithms to replace complex models with far simpler ones, while preserving the accuracy of the predictions. This two-volume handbook covers methods as well as applications. This first volume focuses on real-time control theory, data assimilation, real-time visualization, high-dimensional state spaces and interaction of different reduction techniques.

Encyclopedia of Computational Mechanics

Download Encyclopedia of Computational Mechanics PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 870 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Encyclopedia of Computational Mechanics by : Erwin Stein

Download or read book Encyclopedia of Computational Mechanics written by Erwin Stein and published by . This book was released on 2004 with total page 870 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Encyclopedia of Computational Mechanics provides a comprehensive collection of knowledge about the theory and practice of computational mechanics.

Phase-Field Methods in Materials Science and Engineering

Download Phase-Field Methods in Materials Science and Engineering PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 3527632379
Total Pages : 323 pages
Book Rating : 4.5/5 (276 download)

DOWNLOAD NOW!


Book Synopsis Phase-Field Methods in Materials Science and Engineering by : Nikolas Provatas

Download or read book Phase-Field Methods in Materials Science and Engineering written by Nikolas Provatas and published by John Wiley & Sons. This book was released on 2011-07-26 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive and self-contained, one-stop source discusses phase-field methodology in a fundamental way, explaining advanced numerical techniques for solving phase-field and related continuum-field models. It also presents numerical techniques used to simulate various phenomena in a detailed, step-by-step way, such that readers can carry out their own code developments. Features many examples of how the methods explained can be used in materials science and engineering applications.

Large-Scale Inverse Problems and Quantification of Uncertainty

Download Large-Scale Inverse Problems and Quantification of Uncertainty PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119957583
Total Pages : 403 pages
Book Rating : 4.1/5 (199 download)

DOWNLOAD NOW!


Book Synopsis Large-Scale Inverse Problems and Quantification of Uncertainty by : Lorenz Biegler

Download or read book Large-Scale Inverse Problems and Quantification of Uncertainty written by Lorenz Biegler and published by John Wiley & Sons. This book was released on 2011-06-24 with total page 403 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on computational methods for large-scale statistical inverse problems and provides an introduction to statistical Bayesian and frequentist methodologies. Recent research advances for approximation methods are discussed, along with Kalman filtering methods and optimization-based approaches to solving inverse problems. The aim is to cross-fertilize the perspectives of researchers in the areas of data assimilation, statistics, large-scale optimization, applied and computational mathematics, high performance computing, and cutting-edge applications. The solution to large-scale inverse problems critically depends on methods to reduce computational cost. Recent research approaches tackle this challenge in a variety of different ways. Many of the computational frameworks highlighted in this book build upon state-of-the-art methods for simulation of the forward problem, such as, fast Partial Differential Equation (PDE) solvers, reduced-order models and emulators of the forward problem, stochastic spectral approximations, and ensemble-based approximations, as well as exploiting the machinery for large-scale deterministic optimization through adjoint and other sensitivity analysis methods. Key Features: Brings together the perspectives of researchers in areas of inverse problems and data assimilation. Assesses the current state-of-the-art and identify needs and opportunities for future research. Focuses on the computational methods used to analyze and simulate inverse problems. Written by leading experts of inverse problems and uncertainty quantification. Graduate students and researchers working in statistics, mathematics and engineering will benefit from this book.

Convective Heat Transfer in Porous Media

Download Convective Heat Transfer in Porous Media PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 0429670559
Total Pages : 366 pages
Book Rating : 4.4/5 (296 download)

DOWNLOAD NOW!


Book Synopsis Convective Heat Transfer in Porous Media by : Yasser Mahmoudi

Download or read book Convective Heat Transfer in Porous Media written by Yasser Mahmoudi and published by CRC Press. This book was released on 2019-11-06 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focusing on heat transfer in porous media, this book covers recent advances in nano and macro’ scales. Apart from introducing heat flux bifurcation and splitting within porous media, it highlights two-phase flow, nanofluids, wicking, and convection in bi-disperse porous media. New methods in modeling heat and transport in porous media, such as pore-scale analysis and Lattice–Boltzmann methods, are introduced. The book covers related engineering applications, such as enhanced geothermal systems, porous burners, solar systems, transpiration cooling in aerospace, heat transfer enhancement and electronic cooling, drying and soil evaporation, foam heat exchangers, and polymer-electrolyte fuel cells.

Model Reduction of Parametrized Systems

Download Model Reduction of Parametrized Systems PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319587862
Total Pages : 503 pages
Book Rating : 4.3/5 (195 download)

DOWNLOAD NOW!


Book Synopsis Model Reduction of Parametrized Systems by : Peter Benner

Download or read book Model Reduction of Parametrized Systems written by Peter Benner and published by Springer. This book was released on 2017-09-05 with total page 503 pages. Available in PDF, EPUB and Kindle. Book excerpt: The special volume offers a global guide to new concepts and approaches concerning the following topics: reduced basis methods, proper orthogonal decomposition, proper generalized decomposition, approximation theory related to model reduction, learning theory and compressed sensing, stochastic and high-dimensional problems, system-theoretic methods, nonlinear model reduction, reduction of coupled problems/multiphysics, optimization and optimal control, state estimation and control, reduced order models and domain decomposition methods, Krylov-subspace and interpolatory methods, and applications to real industrial and complex problems. The book represents the state of the art in the development of reduced order methods. It contains contributions from internationally respected experts, guaranteeing a wide range of expertise and topics. Further, it reflects an important effor t, carried out over the last 12 years, to build a growing research community in this field. Though not a textbook, some of the chapters can be used as reference materials or lecture notes for classes and tutorials (doctoral schools, master classes).

Advanced Reduced Order Methods and Applications in Computational Fluid Dynamics

Download Advanced Reduced Order Methods and Applications in Computational Fluid Dynamics PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 1611977258
Total Pages : 501 pages
Book Rating : 4.6/5 (119 download)

DOWNLOAD NOW!


Book Synopsis Advanced Reduced Order Methods and Applications in Computational Fluid Dynamics by : Gianluigi Rozza

Download or read book Advanced Reduced Order Methods and Applications in Computational Fluid Dynamics written by Gianluigi Rozza and published by SIAM. This book was released on 2022-11-21 with total page 501 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reduced order modeling is an important, growing field in computational science and engineering, and this is the first book to address the subject in relation to computational fluid dynamics. It focuses on complex parametrization of shapes for their optimization and includes recent developments in advanced topics such as turbulence, stability of flows, inverse problems, optimization, and flow control, as well as applications. This book will be of interest to researchers and graduate students in the field of reduced order modeling.

Machine Learning, Low-Rank Approximations and Reduced Order Modeling in Computational Mechanics

Download Machine Learning, Low-Rank Approximations and Reduced Order Modeling in Computational Mechanics PDF Online Free

Author :
Publisher : MDPI
ISBN 13 : 3039214098
Total Pages : 254 pages
Book Rating : 4.0/5 (392 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning, Low-Rank Approximations and Reduced Order Modeling in Computational Mechanics by : Felix Fritzen

Download or read book Machine Learning, Low-Rank Approximations and Reduced Order Modeling in Computational Mechanics written by Felix Fritzen and published by MDPI. This book was released on 2019-09-18 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: The use of machine learning in mechanics is booming. Algorithms inspired by developments in the field of artificial intelligence today cover increasingly varied fields of application. This book illustrates recent results on coupling machine learning with computational mechanics, particularly for the construction of surrogate models or reduced order models. The articles contained in this compilation were presented at the EUROMECH Colloquium 597, « Reduced Order Modeling in Mechanics of Materials », held in Bad Herrenalb, Germany, from August 28th to August 31th 2018. In this book, Artificial Neural Networks are coupled to physics-based models. The tensor format of simulation data is exploited in surrogate models or for data pruning. Various reduced order models are proposed via machine learning strategies applied to simulation data. Since reduced order models have specific approximation errors, error estimators are also proposed in this book. The proposed numerical examples are very close to engineering problems. The reader would find this book to be a useful reference in identifying progress in machine learning and reduced order modeling for computational mechanics.