Realtime Data Mining

Download Realtime Data Mining PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3319013211
Total Pages : 333 pages
Book Rating : 4.3/5 (19 download)

DOWNLOAD NOW!


Book Synopsis Realtime Data Mining by : Alexander Paprotny

Download or read book Realtime Data Mining written by Alexander Paprotny and published by Springer Science & Business Media. This book was released on 2013-12-03 with total page 333 pages. Available in PDF, EPUB and Kindle. Book excerpt: ​​​​Describing novel mathematical concepts for recommendation engines, Realtime Data Mining: Self-Learning Techniques for Recommendation Engines features a sound mathematical framework unifying approaches based on control and learning theories, tensor factorization, and hierarchical methods. Furthermore, it presents promising results of numerous experiments on real-world data.​ The area of realtime data mining is currently developing at an exceptionally dynamic pace, and realtime data mining systems are the counterpart of today's “classic” data mining systems. Whereas the latter learn from historical data and then use it to deduce necessary actions, realtime analytics systems learn and act continuously and autonomously. In the vanguard of these new analytics systems are recommendation engines. They are principally found on the Internet, where all information is available in realtime and an immediate feedback is guaranteed. This monograph appeals to computer scientists and specialists in machine learning, especially from the area of recommender systems, because it conveys a new way of realtime thinking by considering recommendation tasks as control-theoretic problems. Realtime Data Mining: Self-Learning Techniques for Recommendation Engines will also interest application-oriented mathematicians because it consistently combines some of the most promising mathematical areas, namely control theory, multilevel approximation, and tensor factorization.

Realtime Data Mining

Download Realtime Data Mining PDF Online Free

Author :
Publisher : Birkhäuser
ISBN 13 : 9783319344454
Total Pages : 0 pages
Book Rating : 4.3/5 (444 download)

DOWNLOAD NOW!


Book Synopsis Realtime Data Mining by : Alexander Paprotny

Download or read book Realtime Data Mining written by Alexander Paprotny and published by Birkhäuser. This book was released on 2016-08-27 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: ​​​​Describing novel mathematical concepts for recommendation engines, Realtime Data Mining: Self-Learning Techniques for Recommendation Engines features a sound mathematical framework unifying approaches based on control and learning theories, tensor factorization, and hierarchical methods. Furthermore, it presents promising results of numerous experiments on real-world data.​ The area of realtime data mining is currently developing at an exceptionally dynamic pace, and realtime data mining systems are the counterpart of today's “classic” data mining systems. Whereas the latter learn from historical data and then use it to deduce necessary actions, realtime analytics systems learn and act continuously and autonomously. In the vanguard of these new analytics systems are recommendation engines. They are principally found on the Internet, where all information is available in realtime and an immediate feedback is guaranteed. This monograph appeals to computer scientists and specialists in machine learning, especially from the area of recommender systems, because it conveys a new way of realtime thinking by considering recommendation tasks as control-theoretic problems. Realtime Data Mining: Self-Learning Techniques for Recommendation Engines will also interest application-oriented mathematicians because it consistently combines some of the most promising mathematical areas, namely control theory, multilevel approximation, and tensor factorization.

Machine Learning for Data Streams

Download Machine Learning for Data Streams PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262346052
Total Pages : 262 pages
Book Rating : 4.2/5 (623 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning for Data Streams by : Albert Bifet

Download or read book Machine Learning for Data Streams written by Albert Bifet and published by MIT Press. This book was released on 2018-03-16 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: A hands-on approach to tasks and techniques in data stream mining and real-time analytics, with examples in MOA, a popular freely available open-source software framework. Today many information sources—including sensor networks, financial markets, social networks, and healthcare monitoring—are so-called data streams, arriving sequentially and at high speed. Analysis must take place in real time, with partial data and without the capacity to store the entire data set. This book presents algorithms and techniques used in data stream mining and real-time analytics. Taking a hands-on approach, the book demonstrates the techniques using MOA (Massive Online Analysis), a popular, freely available open-source software framework, allowing readers to try out the techniques after reading the explanations. The book first offers a brief introduction to the topic, covering big data mining, basic methodologies for mining data streams, and a simple example of MOA. More detailed discussions follow, with chapters on sketching techniques, change, classification, ensemble methods, regression, clustering, and frequent pattern mining. Most of these chapters include exercises, an MOA-based lab session, or both. Finally, the book discusses the MOA software, covering the MOA graphical user interface, the command line, use of its API, and the development of new methods within MOA. The book will be an essential reference for readers who want to use data stream mining as a tool, researchers in innovation or data stream mining, and programmers who want to create new algorithms for MOA.

Real Time Data Mining

Download Real Time Data Mining PDF Online Free

Author :
Publisher :
ISBN 13 : 9780986606045
Total Pages : 154 pages
Book Rating : 4.6/5 (6 download)

DOWNLOAD NOW!


Book Synopsis Real Time Data Mining by : Saed Sayad

Download or read book Real Time Data Mining written by Saed Sayad and published by . This book was released on 2011-01 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data mining is about explaining the past and predicting the future by exploring and analyzing data. Data mining is a multi-disciplinary field which combines statistics, machine learning, artificial intelligence and database technology.Although data mining algorithms are widely used in extremely diverse situations, in practice, one or more major limitations almost invariably appear and significantly constrain successful data mining applications. Frequently, these problems are associated with large increases in the rate of generation of data, the quantity of data and the number of attributes (variables) to be processed: Increasingly, the data situation is now beyond the capabilities of conventional data mining methods.The term Real Time is used to describe how well a data mining algorithm can accommodate an ever increasing data load instantaneously. Upgrading conventional data mining to real time data mining is through the use of a method termed the Real Time Learning Machine or RTLM. The use of the RTLM with conventional data mining methods enables Real Time Data Mining.The future of predictive modeling belongs to real time data mining and the main motivation in authoring this book is to help you to understand the method and to implement it for your applications.

Big Data

Download Big Data PDF Online Free

Author :
Publisher : Simon and Schuster
ISBN 13 : 1638351104
Total Pages : 481 pages
Book Rating : 4.6/5 (383 download)

DOWNLOAD NOW!


Book Synopsis Big Data by : James Warren

Download or read book Big Data written by James Warren and published by Simon and Schuster. This book was released on 2015-04-29 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summary Big Data teaches you to build big data systems using an architecture that takes advantage of clustered hardware along with new tools designed specifically to capture and analyze web-scale data. It describes a scalable, easy-to-understand approach to big data systems that can be built and run by a small team. Following a realistic example, this book guides readers through the theory of big data systems, how to implement them in practice, and how to deploy and operate them once they're built. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Book Web-scale applications like social networks, real-time analytics, or e-commerce sites deal with a lot of data, whose volume and velocity exceed the limits of traditional database systems. These applications require architectures built around clusters of machines to store and process data of any size, or speed. Fortunately, scale and simplicity are not mutually exclusive. Big Data teaches you to build big data systems using an architecture designed specifically to capture and analyze web-scale data. This book presents the Lambda Architecture, a scalable, easy-to-understand approach that can be built and run by a small team. You'll explore the theory of big data systems and how to implement them in practice. In addition to discovering a general framework for processing big data, you'll learn specific technologies like Hadoop, Storm, and NoSQL databases. This book requires no previous exposure to large-scale data analysis or NoSQL tools. Familiarity with traditional databases is helpful. What's Inside Introduction to big data systems Real-time processing of web-scale data Tools like Hadoop, Cassandra, and Storm Extensions to traditional database skills About the Authors Nathan Marz is the creator of Apache Storm and the originator of the Lambda Architecture for big data systems. James Warren is an analytics architect with a background in machine learning and scientific computing. Table of Contents A new paradigm for Big Data PART 1 BATCH LAYER Data model for Big Data Data model for Big Data: Illustration Data storage on the batch layer Data storage on the batch layer: Illustration Batch layer Batch layer: Illustration An example batch layer: Architecture and algorithms An example batch layer: Implementation PART 2 SERVING LAYER Serving layer Serving layer: Illustration PART 3 SPEED LAYER Realtime views Realtime views: Illustration Queuing and stream processing Queuing and stream processing: Illustration Micro-batch stream processing Micro-batch stream processing: Illustration Lambda Architecture in depth

Real-Time Analytics

Download Real-Time Analytics PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118838025
Total Pages : 432 pages
Book Rating : 4.1/5 (188 download)

DOWNLOAD NOW!


Book Synopsis Real-Time Analytics by : Byron Ellis

Download or read book Real-Time Analytics written by Byron Ellis and published by John Wiley & Sons. This book was released on 2014-06-23 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: Construct a robust end-to-end solution for analyzing and visualizing streaming data Real-time analytics is the hottest topic in data analytics today. In Real-Time Analytics: Techniques to Analyze and Visualize Streaming Data, expert Byron Ellis teaches data analysts technologies to build an effective real-time analytics platform. This platform can then be used to make sense of the constantly changing data that is beginning to outpace traditional batch-based analysis platforms. The author is among a very few leading experts in the field. He has a prestigious background in research, development, analytics, real-time visualization, and Big Data streaming and is uniquely qualified to help you explore this revolutionary field. Moving from a description of the overall analytic architecture of real-time analytics to using specific tools to obtain targeted results, Real-Time Analytics leverages open source and modern commercial tools to construct robust, efficient systems that can provide real-time analysis in a cost-effective manner. The book includes: A deep discussion of streaming data systems and architectures Instructions for analyzing, storing, and delivering streaming data Tips on aggregating data and working with sets Information on data warehousing options and techniques Real-Time Analytics includes in-depth case studies for website analytics, Big Data, visualizing streaming and mobile data, and mining and visualizing operational data flows. The book's "recipe" layout lets readers quickly learn and implement different techniques. All of the code examples presented in the book, along with their related data sets, are available on the companion website.

Machine Learning and Data Mining

Download Machine Learning and Data Mining PDF Online Free

Author :
Publisher : Horwood Publishing
ISBN 13 : 9781904275213
Total Pages : 484 pages
Book Rating : 4.2/5 (752 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning and Data Mining by : Igor Kononenko

Download or read book Machine Learning and Data Mining written by Igor Kononenko and published by Horwood Publishing. This book was released on 2007-04-30 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: Good data mining practice for business intelligence (the art of turning raw software into meaningful information) is demonstrated by the many new techniques and developments in the conversion of fresh scientific discovery into widely accessible software solutions. Written as an introduction to the main issues associated with the basics of machine learning and the algorithms used in data mining, this text is suitable foradvanced undergraduates, postgraduates and tutors in a wide area of computer science and technology, as well as researchers looking to adapt various algorithms for particular data mining tasks. A valuable addition to libraries and bookshelves of the many companies who are using the principles of data mining to effectively deliver solid business and industry solutions.

Data Mining and Machine Learning Applications

Download Data Mining and Machine Learning Applications PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119791782
Total Pages : 500 pages
Book Rating : 4.1/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Data Mining and Machine Learning Applications by : Rohit Raja

Download or read book Data Mining and Machine Learning Applications written by Rohit Raja and published by John Wiley & Sons. This book was released on 2022-03-02 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: DATA MINING AND MACHINE LEARNING APPLICATIONS The book elaborates in detail on the current needs of data mining and machine learning and promotes mutual understanding among research in different disciplines, thus facilitating research development and collaboration. Data, the latest currency of today’s world, is the new gold. In this new form of gold, the most beautiful jewels are data analytics and machine learning. Data mining and machine learning are considered interdisciplinary fields. Data mining is a subset of data analytics and machine learning involves the use of algorithms that automatically improve through experience based on data. Massive datasets can be classified and clustered to obtain accurate results. The most common technologies used include classification and clustering methods. Accuracy and error rates are calculated for regression and classification and clustering to find actual results through algorithms like support vector machines and neural networks with forward and backward propagation. Applications include fraud detection, image processing, medical diagnosis, weather prediction, e-commerce and so forth. The book features: A review of the state-of-the-art in data mining and machine learning, A review and description of the learning methods in human-computer interaction, Implementation strategies and future research directions used to meet the design and application requirements of several modern and real-time applications for a long time, The scope and implementation of a majority of data mining and machine learning strategies. A discussion of real-time problems. Audience Industry and academic researchers, scientists, and engineers in information technology, data science and machine and deep learning, as well as artificial intelligence more broadly.

Data Mining in Time Series Databases

Download Data Mining in Time Series Databases PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 981256540X
Total Pages : 205 pages
Book Rating : 4.8/5 (125 download)

DOWNLOAD NOW!


Book Synopsis Data Mining in Time Series Databases by : Abraham Kandel

Download or read book Data Mining in Time Series Databases written by Abraham Kandel and published by World Scientific. This book was released on 2004 with total page 205 pages. Available in PDF, EPUB and Kindle. Book excerpt: Adding the time dimension to real-world databases produces Time SeriesDatabases (TSDB) and introduces new aspects and difficulties to datamining and knowledge discovery. This book covers the state-of-the-artmethodology for mining time series databases. The novel data miningmethods presented in the book include techniques for efficientsegmentation, indexing, and classification of noisy and dynamic timeseries. A graph-based method for anomaly detection in time series isdescribed and the book also studies the implications of a novel andpotentially useful representation of time series as strings. Theproblem of detecting changes in data mining models that are inducedfrom temporal databases is additionally discussed.

Data Mining Applications with R

Download Data Mining Applications with R PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0124115209
Total Pages : 493 pages
Book Rating : 4.1/5 (241 download)

DOWNLOAD NOW!


Book Synopsis Data Mining Applications with R by : Yanchang Zhao

Download or read book Data Mining Applications with R written by Yanchang Zhao and published by Academic Press. This book was released on 2013-11-26 with total page 493 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Mining Applications with R is a great resource for researchers and professionals to understand the wide use of R, a free software environment for statistical computing and graphics, in solving different problems in industry. R is widely used in leveraging data mining techniques across many different industries, including government, finance, insurance, medicine, scientific research and more. This book presents 15 different real-world case studies illustrating various techniques in rapidly growing areas. It is an ideal companion for data mining researchers in academia and industry looking for ways to turn this versatile software into a powerful analytic tool. R code, Data and color figures for the book are provided at the RDataMining.com website. - Helps data miners to learn to use R in their specific area of work and see how R can apply in different industries - Presents various case studies in real-world applications, which will help readers to apply the techniques in their work - Provides code examples and sample data for readers to easily learn the techniques by running the code by themselves

Practical Real-time Data Processing and Analytics

Download Practical Real-time Data Processing and Analytics PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1787289869
Total Pages : 354 pages
Book Rating : 4.7/5 (872 download)

DOWNLOAD NOW!


Book Synopsis Practical Real-time Data Processing and Analytics by : Shilpi Saxena

Download or read book Practical Real-time Data Processing and Analytics written by Shilpi Saxena and published by Packt Publishing Ltd. This book was released on 2017-09-28 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: A practical guide to help you tackle different real-time data processing and analytics problems using the best tools for each scenario About This Book Learn about the various challenges in real-time data processing and use the right tools to overcome them This book covers popular tools and frameworks such as Spark, Flink, and Apache Storm to solve all your distributed processing problems A practical guide filled with examples, tips, and tricks to help you perform efficient Big Data processing in real-time Who This Book Is For If you are a Java developer who would like to be equipped with all the tools required to devise an end-to-end practical solution on real-time data streaming, then this book is for you. Basic knowledge of real-time processing would be helpful, and knowing the fundamentals of Maven, Shell, and Eclipse would be great. What You Will Learn Get an introduction to the established real-time stack Understand the key integration of all the components Get a thorough understanding of the basic building blocks for real-time solution designing Garnish the search and visualization aspects for your real-time solution Get conceptually and practically acquainted with real-time analytics Be well equipped to apply the knowledge and create your own solutions In Detail With the rise of Big Data, there is an increasing need to process large amounts of data continuously, with a shorter turnaround time. Real-time data processing involves continuous input, processing and output of data, with the condition that the time required for processing is as short as possible. This book covers the majority of the existing and evolving open source technology stack for real-time processing and analytics. You will get to know about all the real-time solution aspects, from the source to the presentation to persistence. Through this practical book, you'll be equipped with a clear understanding of how to solve challenges on your own. We'll cover topics such as how to set up components, basic executions, integrations, advanced use cases, alerts, and monitoring. You'll be exposed to the popular tools used in real-time processing today such as Apache Spark, Apache Flink, and Storm. Finally, you will put your knowledge to practical use by implementing all of the techniques in the form of a practical, real-world use case. By the end of this book, you will have a solid understanding of all the aspects of real-time data processing and analytics, and will know how to deploy the solutions in production environments in the best possible manner. Style and Approach In this practical guide to real-time analytics, each chapter begins with a basic high-level concept of the topic, followed by a practical, hands-on implementation of each concept, where you can see the working and execution of it. The book is written in a DIY style, with plenty of practical use cases, well-explained code examples, and relevant screenshots and diagrams.

Frontiers in Massive Data Analysis

Download Frontiers in Massive Data Analysis PDF Online Free

Author :
Publisher : National Academies Press
ISBN 13 : 0309287812
Total Pages : 191 pages
Book Rating : 4.3/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Frontiers in Massive Data Analysis by : National Research Council

Download or read book Frontiers in Massive Data Analysis written by National Research Council and published by National Academies Press. This book was released on 2013-09-03 with total page 191 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data mining of massive data sets is transforming the way we think about crisis response, marketing, entertainment, cybersecurity and national intelligence. Collections of documents, images, videos, and networks are being thought of not merely as bit strings to be stored, indexed, and retrieved, but as potential sources of discovery and knowledge, requiring sophisticated analysis techniques that go far beyond classical indexing and keyword counting, aiming to find relational and semantic interpretations of the phenomena underlying the data. Frontiers in Massive Data Analysis examines the frontier of analyzing massive amounts of data, whether in a static database or streaming through a system. Data at that scale-terabytes and petabytes-is increasingly common in science (e.g., particle physics, remote sensing, genomics), Internet commerce, business analytics, national security, communications, and elsewhere. The tools that work to infer knowledge from data at smaller scales do not necessarily work, or work well, at such massive scale. New tools, skills, and approaches are necessary, and this report identifies many of them, plus promising research directions to explore. Frontiers in Massive Data Analysis discusses pitfalls in trying to infer knowledge from massive data, and it characterizes seven major classes of computation that are common in the analysis of massive data. Overall, this report illustrates the cross-disciplinary knowledge-from computer science, statistics, machine learning, and application disciplines-that must be brought to bear to make useful inferences from massive data.

Real-Time Data Analytics for Large Scale Sensor Data

Download Real-Time Data Analytics for Large Scale Sensor Data PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0128182423
Total Pages : 300 pages
Book Rating : 4.1/5 (281 download)

DOWNLOAD NOW!


Book Synopsis Real-Time Data Analytics for Large Scale Sensor Data by : Himansu Das

Download or read book Real-Time Data Analytics for Large Scale Sensor Data written by Himansu Das and published by Academic Press. This book was released on 2019-08-31 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: Real-Time Data Analytics for Large-Scale Sensor Data covers the theory and applications of hardware platforms and architectures, the development of software methods, techniques and tools, applications, governance and adoption strategies for the use of massive sensor data in real-time data analytics. It presents the leading-edge research in the field and identifies future challenges in this fledging research area. The book captures the essence of real-time IoT based solutions that require a multidisciplinary approach for catering to on-the-fly processing, including methods for high performance stream processing, adaptively streaming adjustment, uncertainty handling, latency handling, and more. - Examines IoT applications, the design of real-time intelligent systems, and how to manage the rapid growth of the large volume of sensor data - Discusses intelligent management systems for applications such as healthcare, robotics and environment modeling - Provides a focused approach towards the design and implementation of real-time intelligent systems for the management of sensor data in large-scale environments

R and Data Mining

Download R and Data Mining PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 012397271X
Total Pages : 251 pages
Book Rating : 4.1/5 (239 download)

DOWNLOAD NOW!


Book Synopsis R and Data Mining by : Yanchang Zhao

Download or read book R and Data Mining written by Yanchang Zhao and published by Academic Press. This book was released on 2012-12-31 with total page 251 pages. Available in PDF, EPUB and Kindle. Book excerpt: R and Data Mining introduces researchers, post-graduate students, and analysts to data mining using R, a free software environment for statistical computing and graphics. The book provides practical methods for using R in applications from academia to industry to extract knowledge from vast amounts of data. Readers will find this book a valuable guide to the use of R in tasks such as classification and prediction, clustering, outlier detection, association rules, sequence analysis, text mining, social network analysis, sentiment analysis, and more.Data mining techniques are growing in popularity in a broad range of areas, from banking to insurance, retail, telecom, medicine, research, and government. This book focuses on the modeling phase of the data mining process, also addressing data exploration and model evaluation.With three in-depth case studies, a quick reference guide, bibliography, and links to a wealth of online resources, R and Data Mining is a valuable, practical guide to a powerful method of analysis. - Presents an introduction into using R for data mining applications, covering most popular data mining techniques - Provides code examples and data so that readers can easily learn the techniques - Features case studies in real-world applications to help readers apply the techniques in their work

Data Mining for Geoinformatics

Download Data Mining for Geoinformatics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461476690
Total Pages : 175 pages
Book Rating : 4.4/5 (614 download)

DOWNLOAD NOW!


Book Synopsis Data Mining for Geoinformatics by : Guido Cervone

Download or read book Data Mining for Geoinformatics written by Guido Cervone and published by Springer Science & Business Media. This book was released on 2013-08-16 with total page 175 pages. Available in PDF, EPUB and Kindle. Book excerpt: The rate at which geospatial data is being generated exceeds our computational capabilities to extract patterns for the understanding of a dynamically changing world. Geoinformatics and data mining focuses on the development and implementation of computational algorithms to solve these problems. This unique volume contains a collection of chapters on state-of-the-art data mining techniques applied to geoinformatic problems of high complexity and important societal value. Data Mining for Geoinformatics addresses current concerns and developments relating to spatio-temporal data mining issues in remotely-sensed data, problems in meteorological data such as tornado formation, estimation of radiation from the Fukushima nuclear power plant, simulations of traffic data using OpenStreetMap, real time traffic applications of data stream mining, visual analytics of traffic and weather data and the exploratory visualization of collective, mobile objects such as the flocking behavior of wild chickens. This book is designed for researchers and advanced-level students focused on computer science, earth science and geography as a reference or secondary text book. Practitioners working in the areas of data mining and geoscience will also find this book to be a valuable reference.

Practical Data Mining

Download Practical Data Mining PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1439868379
Total Pages : 294 pages
Book Rating : 4.4/5 (398 download)

DOWNLOAD NOW!


Book Synopsis Practical Data Mining by : Jr., Monte F. Hancock

Download or read book Practical Data Mining written by Jr., Monte F. Hancock and published by CRC Press. This book was released on 2011-12-19 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: Used by corporations, industry, and government to inform and fuel everything from focused advertising to homeland security, data mining can be a very useful tool across a wide range of applications. Unfortunately, most books on the subject are designed for the computer scientist and statistical illuminati and leave the reader largely adrift in tech

Mining of Massive Datasets

Download Mining of Massive Datasets PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107077230
Total Pages : 480 pages
Book Rating : 4.1/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Mining of Massive Datasets by : Jure Leskovec

Download or read book Mining of Massive Datasets written by Jure Leskovec and published by Cambridge University Press. This book was released on 2014-11-13 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in its second edition, this book focuses on practical algorithms for mining data from even the largest datasets.