Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Real And Complex Clifford Analysis
Download Real And Complex Clifford Analysis full books in PDF, epub, and Kindle. Read online Real And Complex Clifford Analysis ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Real and Complex Clifford Analysis by : Sha Huang
Download or read book Real and Complex Clifford Analysis written by Sha Huang and published by Springer Science & Business Media. This book was released on 2006-03-16 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: Clifford analysis, a branch of mathematics that has been developed since about 1970, has important theoretical value and several applications. In this book, the authors introduce many properties of regular functions and generalized regular functions in real Clifford analysis, as well as harmonic functions in complex Clifford analysis. It covers important developments in handling the incommutativity of multiplication in Clifford algebra, the definitions and computations of high-order singular integrals, boundary value problems, and so on. In addition, the book considers harmonic analysis and boundary value problems in four kinds of characteristic fields proposed by Luogeng Hua for complex analysis of several variables. The great majority of the contents originate in the authors’ investigations, and this new monograph will be interesting for researchers studying the theory of functions.
Book Synopsis Clifford Analysis and Its Applications by : F. Brackx
Download or read book Clifford Analysis and Its Applications written by F. Brackx and published by Springer Science & Business Media. This book was released on 2001-07-31 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: In its traditional form, Clifford analysis provides the function theory for solutions of the Dirac equation. From the beginning, however, the theory was used and applied to problems in other fields of mathematics, numerical analysis, and mathematical physics. recently, the theory has enlarged its scope considerably by incorporating geometrical methods from global analysis on manifolds and methods from representation theory. New, interesting branches of the theory are based on conformally invariant, first-order systems other than the Dirac equation, or systems that are invariant with respect to a group other than the conformal group. This book represents an up-to-date review of Clifford analysis in its present form, its applications, and directions for future research. Readership: Mathematicians and theoretical physicists interested in Clifford analysis itself, or in its applications to other fields.
Book Synopsis Introduction to Clifford Analysis by : Johan Ceballos
Download or read book Introduction to Clifford Analysis written by Johan Ceballos and published by Nova Science Publishers. This book was released on 2020-10-30 with total page 182 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book pursues to exhibit how we can construct a Clifford type algebra from the classical one. The basic idea of these lecture notes is to show how to calculate fundamental solutions to either first-order differential operators of the form D=∑_(i=0)^n▒〖e_i δ_i〗or second-order elliptic differential operators ̄D D, both with constant coefficients or combinations of this kind of operators. After considering in detail how to find the fundamental solution we study the problem of integral representations in a classical Clifford algebra and in a dependent-parameter Clifford algebra which generalizes the classical one. We also propose a basic method to extend the order of the operator, for instance D^n,n∈N and how to produce integral representations for higher order operators and mixtures of them. Although the Clifford algebras have produced many applications concerning boundary value problems, initial value problems, mathematical physics, quantum chemistry, among others; in this book we do not discuss these topics as they are better discussed in other courses. Researchers and practitioners will find this book very useful as a source book.The reader is expected to have basic knowledge of partial differential equations and complex analysis. When planning and writing these lecture notes, we had in mind that they would be used as a resource by mathematics students interested in understanding how we can combine partial differential equations and Clifford analysis to find integral representations. This in turn would allow them to solve boundary value problems and initial value problems. To this end, proofs have been described in rigorous detail and we have included numerous worked examples. On the other hand, exercises have not been included.
Book Synopsis Clifford Algebra and Spinor-Valued Functions by : R. Delanghe
Download or read book Clifford Algebra and Spinor-Valued Functions written by R. Delanghe and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 501 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume describes the substantial developments in Clifford analysis which have taken place during the last decade and, in particular, the role of the spin group in the study of null solutions of real and complexified Dirac and Laplace operators. The book has six main chapters. The first two (Chapters 0 and I) present classical results on real and complex Clifford algebras and show how lower-dimensional real Clifford algebras are well-suited for describing basic geometric notions in Euclidean space. Chapters II and III illustrate how Clifford analysis extends and refines the computational tools available in complex analysis in the plane or harmonic analysis in space. In Chapter IV the concept of monogenic differential forms is generalized to the case of spin-manifolds. Chapter V deals with analysis on homogeneous spaces, and shows how Clifford analysis may be connected with the Penrose transform. The volume concludes with some Appendices which present basic results relating to the algebraic and analytic structures discussed. These are made accessible for computational purposes by means of computer algebra programmes written in REDUCE and are contained on an accompanying floppy disk.
Book Synopsis Clifford Algebras and their Applications in Mathematical Physics by : Rafał Abłamowicz
Download or read book Clifford Algebras and their Applications in Mathematical Physics written by Rafał Abłamowicz and published by Springer Science & Business Media. This book was released on 2000 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first part of a two-volume set concerning the field of Clifford (geometric) algebra, this work consists of thematically organized chapters that provide a broad overview of cutting-edge topics in mathematical physics and the physical applications of Clifford algebras. algebras and their applications in physics. Algebraic geometry, cohomology, non-communicative spaces, q-deformations and the related quantum groups, and projective geometry provide the basis for algebraic topics covered. Physical applications and extensions of physical theories such as the theory of quaternionic spin, a projective theory of hadron transformation laws, and electron scattering are also presented, showing the broad applicability of Clifford geometric algebras in solving physical problems. Treatment of the structure theory of quantum Clifford algebras, the connection to logic, group representations, and computational techniques including symbolic calculations and theorem proving rounds out the presentation.
Book Synopsis Real and Complex Clifford Analysis by : Sha Huang
Download or read book Real and Complex Clifford Analysis written by Sha Huang and published by Springer. This book was released on 2008-11-01 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Clifford analysis, a branch of mathematics that has been developed since about 1970, has important theoretical value and several applications. In this book, the authors introduce many properties of regular functions and generalized regular functions in real Clifford analysis, as well as harmonic functions in complex Clifford analysis. It covers important developments in handling the incommutativity of multiplication in Clifford algebra, the definitions and computations of high-order singular integrals, boundary value problems, and so on. In addition, the book considers harmonic analysis and boundary value problems in four kinds of characteristic fields proposed by Luogeng Hua for complex analysis of several variables. The great majority of the contents originate in the authors’ investigations, and this new monograph will be interesting for researchers studying the theory of functions.
Book Synopsis Clifford Algebras and Dirac Operators in Harmonic Analysis by : John E. Gilbert
Download or read book Clifford Algebras and Dirac Operators in Harmonic Analysis written by John E. Gilbert and published by Cambridge University Press. This book was released on 1991-07-26 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book is to unite the seemingly disparate topics of Clifford algebras, analysis on manifolds, and harmonic analysis. The authors show how algebra, geometry, and differential equations play a more fundamental role in Euclidean Fourier analysis. They then link their presentation of the Euclidean theory naturally to the representation theory of semi-simple Lie groups.
Book Synopsis Clifford Algebras and the Classical Groups by : Ian R. Porteous
Download or read book Clifford Algebras and the Classical Groups written by Ian R. Porteous and published by Cambridge University Press. This book was released on 1995-10-05 with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Clifford algebras of real quadratic forms and their complexifications are studied here in detail, and those parts which are immediately relevant to theoretical physics are seen in the proper broad context. Central to the work is the classification of the conjugation and reversion anti-involutions that arise naturally in the theory. It is of interest that all the classical groups play essential roles in this classification. Other features include detailed sections on conformal groups, the eight-dimensional non-associative Cayley algebra, its automorphism group, the exceptional Lie group G(subscript 2), and the triality automorphism of Spin 8. The book is designed to be suitable for the last year of an undergraduate course or the first year of a postgraduate course.
Book Synopsis Clifford Algebra to Geometric Calculus by : David Hestenes
Download or read book Clifford Algebra to Geometric Calculus written by David Hestenes and published by Springer Science & Business Media. This book was released on 1984 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: Matrix algebra has been called "the arithmetic of higher mathematics" [Be]. We think the basis for a better arithmetic has long been available, but its versatility has hardly been appreciated, and it has not yet been integrated into the mainstream of mathematics. We refer to the system commonly called 'Clifford Algebra', though we prefer the name 'Geometric Algebra' suggested by Clifford himself. Many distinct algebraic systems have been adapted or developed to express geometric relations and describe geometric structures. Especially notable are those algebras which have been used for this purpose in physics, in particular, the system of complex numbers, the quaternions, matrix algebra, vector, tensor and spinor algebras and the algebra of differential forms. Each of these geometric algebras has some significant advantage over the others in certain applications, so no one of them provides an adequate algebraic structure for all purposes of geometry and physics. At the same time, the algebras overlap considerably, so they provide several different mathematical representations for individual geometrical or physical ideas.
Book Synopsis Clifford Algebras and Their Applications in Mathematical Physics by : J.S.R. Chisholm
Download or read book Clifford Algebras and Their Applications in Mathematical Physics written by J.S.R. Chisholm and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 589 pages. Available in PDF, EPUB and Kindle. Book excerpt: William Kingdon Clifford published the paper defining his "geometric algebras" in 1878, the year before his death. Clifford algebra is a generalisation to n-dimensional space of quaternions, which Hamilton used to represent scalars and vectors in real three-space: it is also a development of Grassmann's algebra, incorporating in the fundamental relations inner products defined in terms of the metric of the space. It is a strange fact that the Gibbs Heaviside vector techniques came to dominate in scientific and technical literature, while quaternions and Clifford algebras, the true associative algebras of inner-product spaces, were regarded for nearly a century simply as interesting mathematical curiosities. During this period, Pauli, Dirac and Majorana used the algebras which bear their names to describe properties of elementary particles, their spin in particular. It seems likely that none of these eminent mathematical physicists realised that they were using Clifford algebras. A few research workers such as Fueter realised the power of this algebraic scheme, but the subject only began to be appreciated more widely after the publication of Chevalley's book, 'The Algebraic Theory of Spinors' in 1954, and of Marcel Riesz' Maryland Lectures in 1959. Some of the contributors to this volume, Georges Deschamps, Erik Folke Bolinder, Albert Crumeyrolle and David Hestenes were working in this field around that time, and in their turn have persuaded others of the importance of the subject.
Book Synopsis Clifford Algebras in Analysis and Related Topics by : John Ryan
Download or read book Clifford Algebras in Analysis and Related Topics written by John Ryan and published by CRC Press. This book was released on 1995-10-23 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new book contains the most up-to-date and focused description of the applications of Clifford algebras in analysis, particularly classical harmonic analysis. It is the first single volume devoted to applications of Clifford analysis to other aspects of analysis. All chapters are written by world authorities in the area. Of particular interest is the contribution of Professor Alan McIntosh. He gives a detailed account of the links between Clifford algebras, monogenic and harmonic functions and the correspondence between monogenic functions and holomorphic functions of several complex variables under Fourier transforms. He describes the correspondence between algebras of singular integrals on Lipschitz surfaces and functional calculi of Dirac operators on these surfaces. He also discusses links with boundary value problems over Lipschitz domains. Other specific topics include Hardy spaces and compensated compactness in Euclidean space; applications to acoustic scattering and Galerkin estimates; scattering theory for orthogonal wavelets; applications of the conformal group and Vahalen matrices; Newmann type problems for the Dirac operator; plus much, much more! Clifford Algebras in Analysis and Related Topics also contains the most comprehensive section on open problems available. The book presents the most detailed link between Clifford analysis and classical harmonic analysis. It is a refreshing break from the many expensive and lengthy volumes currently found on the subject.
Book Synopsis Clifford Algebras: An Introduction by : D. J. H. Garling
Download or read book Clifford Algebras: An Introduction written by D. J. H. Garling and published by Cambridge University Press. This book was released on 2011-06-23 with total page 209 pages. Available in PDF, EPUB and Kindle. Book excerpt: A straightforward introduction to Clifford algebras, providing the necessary background material and many applications in mathematics and physics.
Book Synopsis Clifford Algebras and Spinors by : Pertti Lounesto
Download or read book Clifford Algebras and Spinors written by Pertti Lounesto and published by Cambridge University Press. This book was released on 2001-05-03 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the second edition of a popular work offering a unique introduction to Clifford algebras and spinors. The beginning chapters could be read by undergraduates; vectors, complex numbers and quaternions are introduced with an eye on Clifford algebras. The next chapters will also interest physicists, and include treatments of the quantum mechanics of the electron, electromagnetism and special relativity with a flavour of Clifford algebras. This edition has three new chapters, including material on conformal invariance and a history of Clifford algebras.
Download or read book Clifford Analysis written by F. Brackx and published by Pitman Advanced Publishing Program. This book was released on 1982 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Quaternionic and Clifford Calculus for Physicists and Engineers by : Klaus Gürlebeck
Download or read book Quaternionic and Clifford Calculus for Physicists and Engineers written by Klaus Gürlebeck and published by John Wiley & Sons. This book was released on 1997 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quarternionic calculus covers a branch of mathematics which uses computational techniques to help solve problems from a wide variety of physical systems which are mathematically modelled in 3, 4 or more dimensions. Examples of the application areas include thermodynamics, hydrodynamics, geophysics and structural mechanics. Focusing on the Clifford algebra approach the authors have drawn together the research into quarternionic calculus to provide the non-expert or research student with an accessible introduction to the subject. This book fills the gap between the theoretical representations and the requirements of the user.
Book Synopsis An Introduction to Clifford Algebras and Spinors by : Jayme Vaz Jr.
Download or read book An Introduction to Clifford Algebras and Spinors written by Jayme Vaz Jr. and published by Oxford University Press. This book was released on 2016 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work is unique compared to the existing literature. It is very didactical and accessible to both students and researchers, without neglecting the formal character and the deep algebraic completeness of the topic along with its physical applications.
Book Synopsis Applied Analysis, Optimization and Soft Computing by : Tanmoy Som
Download or read book Applied Analysis, Optimization and Soft Computing written by Tanmoy Som and published by Springer Nature. This book was released on 2023-06-10 with total page 425 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains select contributions presented at the International Conference on Nonlinear Applied Analysis and Optimization (ICNAAO-2021), held at the Department of Mathematics Sciences, Indian Institute of Technology (BHU) Varanasi, India, from 21–23 December 2021. The book discusses topics in the areas of nonlinear analysis, fixed point theory, dynamical systems, optimization, fractals, applications to differential/integral equations, signal and image processing, and soft computing, and exposes the young talents with the newer dimensions in these areas with their practical approaches and to tackle the real-life problems in engineering, medical and social sciences. Scientists from the U.S.A., Austria, France, Mexico, Romania, and India have contributed their research. All the submissions are peer reviewed by experts in their fields.