Real Analysis: A Constructive Approach Through Interval Arithmetic

Download Real Analysis: A Constructive Approach Through Interval Arithmetic PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470451441
Total Pages : 321 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Real Analysis: A Constructive Approach Through Interval Arithmetic by : Mark Bridger

Download or read book Real Analysis: A Constructive Approach Through Interval Arithmetic written by Mark Bridger and published by American Mathematical Soc.. This book was released on 2019-07-05 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: Real Analysis: A Constructive Approach Through Interval Arithmetic presents a careful treatment of calculus and its theoretical underpinnings from the constructivist point of view. This leads to an important and unique feature of this book: All existence proofs are direct, so showing that the numbers or functions in question exist means exactly that they can be explicitly calculated. For example, at the very beginning, the real numbers are shown to exist because they are constructed from the rationals using interval arithmetic. This approach, with its clear analogy to scientific measurement with tolerances, is taken throughout the book and makes the subject especially relevant and appealing to students with an interest in computing, applied mathematics, the sciences, and engineering. The first part of the book contains all the usual material in a standard one-semester course in analysis of functions of a single real variable: continuity (uniform, not pointwise), derivatives, integrals, and convergence. The second part contains enough more technical material—including an introduction to complex variables and Fourier series—to fill out a full-year course. Throughout the book the emphasis on rigorous and direct proofs is supported by an abundance of examples, exercises, and projects—many with hints—at the end of every section. The exposition is informal but exceptionally clear and well motivated throughout.

Real Analysis

Download Real Analysis PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118031563
Total Pages : 323 pages
Book Rating : 4.1/5 (18 download)

DOWNLOAD NOW!


Book Synopsis Real Analysis by : Mark Bridger

Download or read book Real Analysis written by Mark Bridger and published by John Wiley & Sons. This book was released on 2011-10-14 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: A unique approach to analysis that lets you apply mathematics across a range of subjects This innovative text sets forth a thoroughly rigorous modern account of the theoretical underpinnings of calculus: continuity, differentiability, and convergence. Using a constructive approach, every proof of every result is direct and ultimately computationally verifiable. In particular, existence is never established by showing that the assumption of non-existence leads to a contradiction. The ultimate consequence of this method is that it makes sense—not just to math majors but also to students from all branches of the sciences. The text begins with a construction of the real numbers beginning with the rationals, using interval arithmetic. This introduces readers to the reasoning and proof-writing skills necessary for doing and communicating mathematics, and it sets the foundation for the rest of the text, which includes: Early use of the Completeness Theorem to prove a helpful Inverse Function Theorem Sequences, limits and series, and the careful derivation of formulas and estimates for important functions Emphasis on uniform continuity and its consequences, such as boundedness and the extension of uniformly continuous functions from dense subsets Construction of the Riemann integral for functions uniformly continuous on an interval, and its extension to improper integrals Differentiation, emphasizing the derivative as a function rather than a pointwise limit Properties of sequences and series of continuous and differentiable functions Fourier series and an introduction to more advanced ideas in functional analysis Examples throughout the text demonstrate the application of new concepts. Readers can test their own skills with problems and projects ranging in difficulty from basic to challenging. This book is designed mainly for an undergraduate course, and the author understands that many readers will not go on to more advanced pure mathematics. He therefore emphasizes an approach to mathematical analysis that can be applied across a range of subjects in engineering and the sciences.

Real Analysis

Download Real Analysis PDF Online Free

Author :
Publisher : Wiley
ISBN 13 : 9781118367759
Total Pages : 320 pages
Book Rating : 4.3/5 (677 download)

DOWNLOAD NOW!


Book Synopsis Real Analysis by : Mark Bridger

Download or read book Real Analysis written by Mark Bridger and published by Wiley. This book was released on 2012-04-24 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: A unique approach to analysis that lets you apply mathematics across a range of subjects This innovative text sets forth a thoroughly rigorous modern account of the theoretical underpinnings of calculus: continuity, differentiability, and convergence. Using a constructive approach, every proof of every result is direct and ultimately computationally verifiable. In particular, existence is never established by showing that the assumption of non-existence leads to a contradiction. The ultimate consequence of this method is that it makes sense-not just to math majors but also to students from a.

Introduction to Interval Analysis

Download Introduction to Interval Analysis PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 089871771X
Total Pages : 223 pages
Book Rating : 4.8/5 (987 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Interval Analysis by : Ramon E. Moore

Download or read book Introduction to Interval Analysis written by Ramon E. Moore and published by SIAM. This book was released on 2009-01-01 with total page 223 pages. Available in PDF, EPUB and Kindle. Book excerpt: An update on the author's previous books, this introduction to interval analysis provides an introduction to INTLAB, a high-quality, comprehensive MATLAB toolbox for interval computations, making this the first interval analysis book that does with INTLAB what general numerical analysis texts do with MATLAB.

Applied Interval Analysis

Download Applied Interval Analysis PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1447102495
Total Pages : 382 pages
Book Rating : 4.4/5 (471 download)

DOWNLOAD NOW!


Book Synopsis Applied Interval Analysis by : Luc Jaulin

Download or read book Applied Interval Analysis written by Luc Jaulin and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: At the core of many engineering problems is the solution of sets of equa tions and inequalities, and the optimization of cost functions. Unfortunately, except in special cases, such as when a set of equations is linear in its un knowns or when a convex cost function has to be minimized under convex constraints, the results obtained by conventional numerical methods are only local and cannot be guaranteed. This means, for example, that the actual global minimum of a cost function may not be reached, or that some global minimizers of this cost function may escape detection. By contrast, interval analysis makes it possible to obtain guaranteed approximations of the set of all the actual solutions of the problem being considered. This, together with the lack of books presenting interval techniques in such a way that they could become part of any engineering numerical tool kit, motivated the writing of this book. The adventure started in 1991 with the preparation by Luc Jaulin of his PhD thesis, under Eric Walter's supervision. It continued with their joint supervision of Olivier Didrit's and Michel Kieffer's PhD theses. More than two years ago, when we presented our book project to Springer, we naively thought that redaction would be a simple matter, given what had already been achieved . . .

Measure, Integration & Real Analysis

Download Measure, Integration & Real Analysis PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030331431
Total Pages : 430 pages
Book Rating : 4.0/5 (33 download)

DOWNLOAD NOW!


Book Synopsis Measure, Integration & Real Analysis by : Sheldon Axler

Download or read book Measure, Integration & Real Analysis written by Sheldon Axler and published by Springer Nature. This book was released on 2019-11-29 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access textbook welcomes students into the fundamental theory of measure, integration, and real analysis. Focusing on an accessible approach, Axler lays the foundations for further study by promoting a deep understanding of key results. Content is carefully curated to suit a single course, or two-semester sequence of courses, creating a versatile entry point for graduate studies in all areas of pure and applied mathematics. Motivated by a brief review of Riemann integration and its deficiencies, the text begins by immersing students in the concepts of measure and integration. Lebesgue measure and abstract measures are developed together, with each providing key insight into the main ideas of the other approach. Lebesgue integration links into results such as the Lebesgue Differentiation Theorem. The development of products of abstract measures leads to Lebesgue measure on Rn. Chapters on Banach spaces, Lp spaces, and Hilbert spaces showcase major results such as the Hahn–Banach Theorem, Hölder’s Inequality, and the Riesz Representation Theorem. An in-depth study of linear maps on Hilbert spaces culminates in the Spectral Theorem and Singular Value Decomposition for compact operators, with an optional interlude in real and complex measures. Building on the Hilbert space material, a chapter on Fourier analysis provides an invaluable introduction to Fourier series and the Fourier transform. The final chapter offers a taste of probability. Extensively class tested at multiple universities and written by an award-winning mathematical expositor, Measure, Integration & Real Analysis is an ideal resource for students at the start of their journey into graduate mathematics. A prerequisite of elementary undergraduate real analysis is assumed; students and instructors looking to reinforce these ideas will appreciate the electronic Supplement for Measure, Integration & Real Analysis that is freely available online. For errata and updates, visit https://measure.axler.net/

Modern Real Analysis

Download Modern Real Analysis PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 331964629X
Total Pages : 389 pages
Book Rating : 4.3/5 (196 download)

DOWNLOAD NOW!


Book Synopsis Modern Real Analysis by : William P. Ziemer

Download or read book Modern Real Analysis written by William P. Ziemer and published by Springer. This book was released on 2017-11-30 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: This first year graduate text is a comprehensive resource in real analysis based on a modern treatment of measure and integration. Presented in a definitive and self-contained manner, it features a natural progression of concepts from simple to difficult. Several innovative topics are featured, including differentiation of measures, elements of Functional Analysis, the Riesz Representation Theorem, Schwartz distributions, the area formula, Sobolev functions and applications to harmonic functions. Together, the selection of topics forms a sound foundation in real analysis that is particularly suited to students going on to further study in partial differential equations. This second edition of Modern Real Analysis contains many substantial improvements, including the addition of problems for practicing techniques, and an entirely new section devoted to the relationship between Lebesgue and improper integrals. Aimed at graduate students with an understanding of advanced calculus, the text will also appeal to more experienced mathematicians as a useful reference.

Introduction to Real Analysis, Fourth Edition

Download Introduction to Real Analysis, Fourth Edition PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 417 pages
Book Rating : 4.6/5 (839 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Real Analysis, Fourth Edition by : Donald R. Sherbert

Download or read book Introduction to Real Analysis, Fourth Edition written by Donald R. Sherbert and published by . This book was released on 2020-09-08 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Real Analysis, Fourth Edition by Robert G. BartleDonald R. Sherbert The first three editions were very well received and this edition maintains the samespirit and user-friendly approach as earlier editions. Every section has been examined.Some sections have been revised, new examples and exercises have been added, and a newsection on the Darboux approach to the integral has been added to Chapter 7. There is morematerial than can be covered in a semester and instructors will need to make selections andperhaps use certain topics as honors or extra credit projects.To provide some help for students in analyzing proofs of theorems, there is anappendix on ''Logic and Proofs'' that discusses topics such as implications, negations,contrapositives, and different types of proofs. However, it is a more useful experience tolearn how to construct proofs by first watching and then doing than by reading abouttechniques of proof.Results and proofs are given at a medium level of generality. For instance, continuousfunctions on closed, bounded intervals are studied in detail, but the proofs can be readilyadapted to a more general situation. This approach is used to advantage in Chapter 11where topological concepts are discussed. There are a large number of examples toillustrate the concepts, and extensive lists of exercises to challenge students and to aid themin understanding the significance of the theorems.Chapter 1 has a brief summary of the notions and notations for sets and functions thatwill be used. A discussion of Mathematical Induction is given, since inductive proofs arisefrequently. There is also a section on finite, countable and infinite sets. This chapter canused to provide some practice in proofs, or covered quickly, or used as background materialand returning later as necessary.Chapter 2 presents the properties of the real number system. The first two sections dealwith Algebraic and Order properties, and the crucial Completeness Property is given inSection 2.3 as the Supremum Property. Its ramifications are discussed throughout theremainder of the chapter.In Chapter 3, a thorough treatment of sequences is given, along with the associatedlimit concepts. The material is of the greatest importance. Students find it rather naturalthough it takes time for them to become accustomed to the use of epsilon. A briefintroduction to Infinite Series is given in Section 3.7, with more advanced materialpresented in Chapter 9 Chapter 4 on limits of functions and Chapter 5 on continuous functions constitute theheart of the book. The discussion of limits and continuity relies heavily on the use ofsequences, and the closely parallel approach of these chapters reinforces the understandingof these essential topics. The fundamental properties of continuous functions on intervalsare discussed in Sections 5.3 and 5.4. The notion of a gauge is introduced in Section 5.5 andused to give alternate proofs of these theorems. Monotone functions are discussed inSection 5.6.The basic theory of the derivative is given in the first part of Chapter 6. This material isstandard, except a result of Caratheodory is used to give simpler proofs of the Chain Ruleand the Inversion Theorem. The remainder of the chapter consists of applications of theMean Value Theorem and may be explored as time permits.In Chapter 7, the Riemann integral is defined in Section 7.1 as a limit of Riemannsums. This has the advantage that it is consistent with the students' first exposure to theintegral in calculus, and since it is not dependent on order properties, it permits immediategeneralization to complex- and vector-values functions that students may encounter in latercourses. It is also consistent with the generalized Riemann integral that is discussed inChapter 10. Sections 7.2 and 7.3 develop properties of the integral and establish theFundamental Theorem and many more

Real Analysis

Download Real Analysis PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 1493927663
Total Pages : 486 pages
Book Rating : 4.4/5 (939 download)

DOWNLOAD NOW!


Book Synopsis Real Analysis by : Miklós Laczkovich

Download or read book Real Analysis written by Miklós Laczkovich and published by Springer. This book was released on 2015-10-08 with total page 486 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on courses given at Eötvös Loránd University (Hungary) over the past 30 years, this introductory textbook develops the central concepts of the analysis of functions of one variable — systematically, with many examples and illustrations, and in a manner that builds upon, and sharpens, the student’s mathematical intuition. The book provides a solid grounding in the basics of logic and proofs, sets, and real numbers, in preparation for a study of the main topics: limits, continuity, rational functions and transcendental functions, differentiation, and integration. Numerous applications to other areas of mathematics, and to physics, are given, thereby demonstrating the practical scope and power of the theoretical concepts treated. In the spirit of learning-by-doing, Real Analysis includes more than 500 engaging exercises for the student keen on mastering the basics of analysis. The wealth of material, and modular organization, of the book make it adaptable as a textbook for courses of various levels; the hints and solutions provided for the more challenging exercises make it ideal for independent study.

Constructive Analysis

Download Constructive Analysis PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642616674
Total Pages : 490 pages
Book Rating : 4.6/5 (426 download)

DOWNLOAD NOW!


Book Synopsis Constructive Analysis by : E. Bishop

Download or read book Constructive Analysis written by E. Bishop and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 490 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work grew out of Errett Bishop's fundamental treatise 'Founda tions of Constructive Analysis' (FCA), which appeared in 1967 and which contained the bountiful harvest of a remarkably short period of research by its author. Truly, FCA was an exceptional book, not only because of the quantity of original material it contained, but also as a demonstration of the practicability of a program which most ma thematicians believed impossible to carry out. Errett's book went out of print shortly after its publication, and no second edition was produced by its publishers. Some years later, 'by a set of curious chances', it was agreed that a new edition of FCA would be published by Springer Verlag, the revision being carried out by me under Errett's supervision; at the same time, Errett gener ously insisted that I become a joint author. The revision turned out to be much more substantial than we had anticipated, and took longer than we would have wished. Indeed, tragically, Errett died before the work was completed. The present book is the result of our efforts. Although substantially based on FCA, it contains so much new material, and such full revision and expansion of the old, that it is essentially a new book. For this reason, and also to preserve the integrity of the original, I decided to give our joint work a title of its own. Most of the new material outside Chapter 5 originated with Errett.

Basic Real Analysis

Download Basic Real Analysis PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0817644415
Total Pages : 671 pages
Book Rating : 4.8/5 (176 download)

DOWNLOAD NOW!


Book Synopsis Basic Real Analysis by : Anthony W. Knapp

Download or read book Basic Real Analysis written by Anthony W. Knapp and published by Springer Science & Business Media. This book was released on 2007-10-04 with total page 671 pages. Available in PDF, EPUB and Kindle. Book excerpt: Systematically develop the concepts and tools that are vital to every mathematician, whether pure or applied, aspiring or established A comprehensive treatment with a global view of the subject, emphasizing the connections between real analysis and other branches of mathematics Included throughout are many examples and hundreds of problems, and a separate 55-page section gives hints or complete solutions for most.

Principles of Real Analysis

Download Principles of Real Analysis PDF Online Free

Author :
Publisher : Gulf Professional Publishing
ISBN 13 : 9780120502578
Total Pages : 434 pages
Book Rating : 4.5/5 (25 download)

DOWNLOAD NOW!


Book Synopsis Principles of Real Analysis by : Charalambos D. Aliprantis

Download or read book Principles of Real Analysis written by Charalambos D. Aliprantis and published by Gulf Professional Publishing. This book was released on 1998-08-26 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: The new, Third Edition of this successful text covers the basic theory of integration in a clear, well-organized manner. The authors present an imaginative and highly practical synthesis of the "Daniell method" and the measure theoretic approach. It is the ideal text for undergraduate and first-year graduate courses in real analysis. This edition offers a new chapter on Hilbert Spaces and integrates over 150 new exercises. New and varied examples are included for each chapter. Students will be challenged by the more than 600 exercises. Topics are treated rigorously, illustrated by examples, and offer a clear connection between real and functional analysis. This text can be used in combination with the authors' Problems in Real Analysis, 2nd Edition, also published by Academic Press, which offers complete solutions to all exercises in the Principles text. Key Features: * Gives a unique presentation of integration theory * Over 150 new exercises integrated throughout the text * Presents a new chapter on Hilbert Spaces * Provides a rigorous introduction to measure theory * Illustrated with new and varied examples in each chapter * Introduces topological ideas in a friendly manner * Offers a clear connection between real analysis and functional analysis * Includes brief biographies of mathematicians "All in all, this is a beautiful selection and a masterfully balanced presentation of the fundamentals of contemporary measure and integration theory which can be grasped easily by the student." --J. Lorenz in Zentralblatt für Mathematik "...a clear and precise treatment of the subject. There are many exercises of varying degrees of difficulty. I highly recommend this book for classroom use." --CASPAR GOFFMAN, Department of Mathematics, Purdue University

Theorem Proving in Higher Order Logics

Download Theorem Proving in Higher Order Logics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540283722
Total Pages : 418 pages
Book Rating : 4.5/5 (42 download)

DOWNLOAD NOW!


Book Synopsis Theorem Proving in Higher Order Logics by : Joe Hurd

Download or read book Theorem Proving in Higher Order Logics written by Joe Hurd and published by Springer Science & Business Media. This book was released on 2005-08-08 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 18th International Conference on Theorem Proving in Higher Order Logics, TPHOLs 2005, held in Oxford, UK, in August 2005. The 20 revised full papers presented together with 2 invited papers and 4 proof pearls (concise and elegant presentations of interesting examples) were carefully reviewed and selected from 49 submissions. All current issues in HOL theorem proving and formal verification of software and hardware systems are addressed. Among the topics of this volume are theorem proving, verification, recursion and induction, mechanized proofs, mathematical logic, proof theory, type systems, program verification, and proving systems like HOL, Coq, ACL2, Isabelle/HOL and Isabelle/HOLCF.

Abstracts of Papers Presented to the American Mathematical Society

Download Abstracts of Papers Presented to the American Mathematical Society PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 754 pages
Book Rating : 4.E/5 ( download)

DOWNLOAD NOW!


Book Synopsis Abstracts of Papers Presented to the American Mathematical Society by : American Mathematical Society

Download or read book Abstracts of Papers Presented to the American Mathematical Society written by American Mathematical Society and published by . This book was released on 2007 with total page 754 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Encyclopaedia of Mathematics

Download Encyclopaedia of Mathematics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9400903650
Total Pages : 743 pages
Book Rating : 4.4/5 (9 download)

DOWNLOAD NOW!


Book Synopsis Encyclopaedia of Mathematics by : Michiel Hazewinkel

Download or read book Encyclopaedia of Mathematics written by Michiel Hazewinkel and published by Springer Science & Business Media. This book was released on 2013-12-01 with total page 743 pages. Available in PDF, EPUB and Kindle. Book excerpt: This ENCYCLOPAEDIA OF MATHEMATICS aims to be a reference work for all parts of mathe matics. It is a translation with updates and editorial comments of the Soviet Mathematical Encyclopaedia published by 'Soviet Encyclopaedia Publishing House' in five volumes in 1977-1985. The annotated translation consists of ten volumes including a special index volume. There are three kinds of articles in this ENCYCLOPAEDIA. First of all there are survey-type articles dealing with the various main directions in mathematics (where a rather fine subdivi sion has been used). The main requirement for these articles has been that they should give a reasonably complete up-to-date account of the current state of affairs in these areas and that they should be maximally accessible. On the whole, these articles should be understandable to mathematics students in their first specialization years, to graduates from other mathematical areas and, depending on the specific subject, to specialists in other domains of science, en gineers and teachers of mathematics. These articles treat their material at a fairly general level and aim to give an idea of the kind of problems, techniques and concepts involved in the area in question. They also contain background and motivation rather than precise statements of precise theorems with detailed definitions and technical details on how to carry out proofs and constructions. The second kind of article, of medium length, contains more detailed concrete problems, results and techniques.

An Introduction to Measure Theory

Download An Introduction to Measure Theory PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470466406
Total Pages : 206 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Measure Theory by : Terence Tao

Download or read book An Introduction to Measure Theory written by Terence Tao and published by American Mathematical Soc.. This book was released on 2021-09-03 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a graduate text introducing the fundamentals of measure theory and integration theory, which is the foundation of modern real analysis. The text focuses first on the concrete setting of Lebesgue measure and the Lebesgue integral (which in turn is motivated by the more classical concepts of Jordan measure and the Riemann integral), before moving on to abstract measure and integration theory, including the standard convergence theorems, Fubini's theorem, and the Carathéodory extension theorem. Classical differentiation theorems, such as the Lebesgue and Rademacher differentiation theorems, are also covered, as are connections with probability theory. The material is intended to cover a quarter or semester's worth of material for a first graduate course in real analysis. There is an emphasis in the text on tying together the abstract and the concrete sides of the subject, using the latter to illustrate and motivate the former. The central role of key principles (such as Littlewood's three principles) as providing guiding intuition to the subject is also emphasized. There are a large number of exercises throughout that develop key aspects of the theory, and are thus an integral component of the text. As a supplementary section, a discussion of general problem-solving strategies in analysis is also given. The last three sections discuss optional topics related to the main matter of the book.

Reverse Mathematics

Download Reverse Mathematics PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 0691196419
Total Pages : 198 pages
Book Rating : 4.6/5 (911 download)

DOWNLOAD NOW!


Book Synopsis Reverse Mathematics by : John Stillwell

Download or read book Reverse Mathematics written by John Stillwell and published by Princeton University Press. This book was released on 2019-09-24 with total page 198 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents reverse mathematics to a general mathematical audience for the first time. Stillwell gives a representative view of this field, emphasizing basic analysis--finding the "right axioms" to prove fundamental theorems--and giving a novel approach to logic. to logic.