Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Random Fields On A Network
Download Random Fields On A Network full books in PDF, epub, and Kindle. Read online Random Fields On A Network ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Random Fields on a Network by : Xavier Guyon
Download or read book Random Fields on a Network written by Xavier Guyon and published by Springer Science & Business Media. This book was released on 1995-06-23 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of spatial models over lattices, or random fields as they are known, has developed significantly over recent years. This book provides a graduate-level introduction to the subject which assumes only a basic knowledge of probability and statistics, finite Markov chains, and the spectral theory of second-order processes. A particular strength of this book is its emphasis on examples - both to motivate the theory which is being developed, and to demonstrate the applications which range from statistical mechanics to image analysis and from statistics to stochastic algorithms.
Book Synopsis Markov Random Field Modeling in Image Analysis by : Stan Z. Li
Download or read book Markov Random Field Modeling in Image Analysis written by Stan Z. Li and published by Springer Science & Business Media. This book was released on 2009-04-03 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: Markov random field (MRF) theory provides a basis for modeling contextual constraints in visual processing and interpretation. It enables us to develop optimal vision algorithms systematically when used with optimization principles. This book presents a comprehensive study on the use of MRFs for solving computer vision problems. Various vision models are presented in a unified framework, including image restoration and reconstruction, edge and region segmentation, texture, stereo and motion, object matching and recognition, and pose estimation. This third edition includes the most recent advances and has new and expanded sections on topics such as: Bayesian Network; Discriminative Random Fields; Strong Random Fields; Spatial-Temporal Models; Learning MRF for Classification. This book is an excellent reference for researchers working in computer vision, image processing, statistical pattern recognition and applications of MRFs. It is also suitable as a text for advanced courses in these areas.
Book Synopsis Hybrid Random Fields by : Antonino Freno
Download or read book Hybrid Random Fields written by Antonino Freno and published by Springer Science & Business Media. This book was released on 2011-04-11 with total page 217 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents an exciting new synthesis of directed and undirected, discrete and continuous graphical models. Combining elements of Bayesian networks and Markov random fields, the newly introduced hybrid random fields are an interesting approach to get the best of both these worlds, with an added promise of modularity and scalability. The authors have written an enjoyable book---rigorous in the treatment of the mathematical background, but also enlivened by interesting and original historical and philosophical perspectives. -- Manfred Jaeger, Aalborg Universitet The book not only marks an effective direction of investigation with significant experimental advances, but it is also---and perhaps primarily---a guide for the reader through an original trip in the space of probabilistic modeling. While digesting the book, one is enriched with a very open view of the field, with full of stimulating connections. [...] Everyone specifically interested in Bayesian networks and Markov random fields should not miss it. -- Marco Gori, Università degli Studi di Siena Graphical models are sometimes regarded---incorrectly---as an impractical approach to machine learning, assuming that they only work well for low-dimensional applications and discrete-valued domains. While guiding the reader through the major achievements of this research area in a technically detailed yet accessible way, the book is concerned with the presentation and thorough (mathematical and experimental) investigation of a novel paradigm for probabilistic graphical modeling, the hybrid random field. This model subsumes and extends both Bayesian networks and Markov random fields. Moreover, it comes with well-defined learning algorithms, both for discrete and continuous-valued domains, which fit the needs of real-world applications involving large-scale, high-dimensional data.
Book Synopsis Collecting Spatial Data by : Werner G. Müller
Download or read book Collecting Spatial Data written by Werner G. Müller and published by Springer Science & Business Media. This book was released on 2007-08-17 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is concerned with the statistical theory for locating spatial sensors. It bridges the gap between spatial statistics and optimum design theory. After introductions to those two fields the topics of exploratory designs and designs for spatial trend and variogram estimation are treated. Special attention is devoted to describing new methodologies to cope with the problem of correlated observations.
Book Synopsis Markov Random Field Modeling in Computer Vision by : S.Z. Li
Download or read book Markov Random Field Modeling in Computer Vision written by S.Z. Li and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: Markov random field (MRF) modeling provides a basis for the characterization of contextual constraints on visual interpretation and enables us to develop optimal vision algorithms systematically based on sound principles. This book presents a comprehensive study on using MRFs to solve computer vision problems, covering the following parts essential to the subject: introduction to fundamental theories, formulations of various vision models in the MRF framework, MRF parameter estimation, and optimization algorithms. Various MRF vision models are presented in a unified form, including image restoration and reconstruction, edge and region segmentation, texture, stereo and motion, object matching and recognition, and pose estimation. This book is an excellent reference for researchers working in computer vision, image processing, pattern recognition and applications of MRFs. It is also suitable as a text for advanced courses in the subject.
Book Synopsis Markov Random Field by : Fouad Sabry
Download or read book Markov Random Field written by Fouad Sabry and published by One Billion Knowledgeable. This book was released on 2024-05-12 with total page 101 pages. Available in PDF, EPUB and Kindle. Book excerpt: What is Markov Random Field In the domain of physics and probability, a Markov random field (MRF), Markov network or undirected graphical model is a set of random variables having a Markov property described by an undirected graph. In other words, a random field is said to be a Markov random field if it satisfies Markov properties. The concept originates from the Sherrington-Kirkpatrick model. How you will benefit (I) Insights, and validations about the following topics: Chapter 1: Markov random field Chapter 2: Multivariate random variable Chapter 3: Hidden Markov model Chapter 4: Bayesian network Chapter 5: Graphical model Chapter 6: Random field Chapter 7: Belief propagation Chapter 8: Factor graph Chapter 9: Conditional random field Chapter 10: Hammersley-Clifford theorem (II) Answering the public top questions about markov random field. (III) Real world examples for the usage of markov random field in many fields. Who this book is for Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of Markov Random Field.
Book Synopsis Random Fields for Spatial Data Modeling by : Dionissios T. Hristopulos
Download or read book Random Fields for Spatial Data Modeling written by Dionissios T. Hristopulos and published by Springer Nature. This book was released on 2020-02-17 with total page 884 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an inter-disciplinary introduction to the theory of random fields and its applications. Spatial models and spatial data analysis are integral parts of many scientific and engineering disciplines. Random fields provide a general theoretical framework for the development of spatial models and their applications in data analysis. The contents of the book include topics from classical statistics and random field theory (regression models, Gaussian random fields, stationarity, correlation functions) spatial statistics (variogram estimation, model inference, kriging-based prediction) and statistical physics (fractals, Ising model, simulated annealing, maximum entropy, functional integral representations, perturbation and variational methods). The book also explores links between random fields, Gaussian processes and neural networks used in machine learning. Connections with applied mathematics are highlighted by means of models based on stochastic partial differential equations. An interlude on autoregressive time series provides useful lower-dimensional analogies and a connection with the classical linear harmonic oscillator. Other chapters focus on non-Gaussian random fields and stochastic simulation methods. The book also presents results based on the author’s research on Spartan random fields that were inspired by statistical field theories originating in physics. The equivalence of the one-dimensional Spartan random field model with the classical, linear, damped harmonic oscillator driven by white noise is highlighted. Ideas with potentially significant computational gains for the processing of big spatial data are presented and discussed. The final chapter concludes with a description of the Karhunen-Loève expansion of the Spartan model. The book will appeal to engineers, physicists, and geoscientists whose research involves spatial models or spatial data analysis. Anyone with background in probability and statistics can read at least parts of the book. Some chapters will be easier to understand by readers familiar with differential equations and Fourier transforms.
Book Synopsis An Introduction to Conditional Random Fields by : Charles Sutton
Download or read book An Introduction to Conditional Random Fields written by Charles Sutton and published by Now Pub. This book was released on 2012 with total page 120 pages. Available in PDF, EPUB and Kindle. Book excerpt: An Introduction to Conditional Random Fields provides a comprehensive tutorial aimed at application-oriented practitioners seeking to apply CRFs. The monograph does not assume previous knowledge of graphical modeling, and so is intended to be useful to practitioners in a wide variety of fields.
Book Synopsis Random Networks for Communication by : Massimo Franceschetti
Download or read book Random Networks for Communication written by Massimo Franceschetti and published by Cambridge University Press. This book was released on 2008-01-10 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: When is a random network (almost) connected? How much information can it carry? How can you find a particular destination within the network? And how do you approach these questions - and others - when the network is random? The analysis of communication networks requires a fascinating synthesis of random graph theory, stochastic geometry and percolation theory to provide models for both structure and information flow. This book is the first comprehensive introduction for graduate students and scientists to techniques and problems in the field of spatial random networks. The selection of material is driven by applications arising in engineering, and the treatment is both readable and mathematically rigorous. Though mainly concerned with information-flow-related questions motivated by wireless data networks, the models developed are also of interest in a broader context, ranging from engineering to social networks, biology, and physics.
Book Synopsis Theory of Spatial Statistics by : M.N.M. van Lieshout
Download or read book Theory of Spatial Statistics written by M.N.M. van Lieshout and published by CRC Press. This book was released on 2019-03-19 with total page 221 pages. Available in PDF, EPUB and Kindle. Book excerpt: Theory of Spatial Statistics: A Concise Introduction presents the most important models used in spatial statistics, including random fields and point processes, from a rigorous mathematical point of view and shows how to carry out statistical inference. It contains full proofs, real-life examples and theoretical exercises. Solutions to the latter are available in an appendix. Assuming maturity in probability and statistics, these concise lecture notes are self-contained and cover enough material for a semester course. They may also serve as a reference book for researchers. Features * Presents the mathematical foundations of spatial statistics. * Contains worked examples from mining, disease mapping, forestry, soil and environmental science, and criminology. * Gives pointers to the literature to facilitate further study. * Provides example code in R to encourage the student to experiment. * Offers exercises and their solutions to test and deepen understanding. The book is suitable for postgraduate and advanced undergraduate students in mathematics and statistics.
Book Synopsis Markov Random Fields and Their Applications by : Ross Kindermann
Download or read book Markov Random Fields and Their Applications written by Ross Kindermann and published by . This book was released on 1980 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of Markov random fields has brought exciting new problems to probability theory which are being developed in parallel with basic investigation in other disciplines, most notably physics. The mathematical and physical literature is often quite technical. This book aims at a more gentle introduction to these new areas of research.
Book Synopsis Random Graphs and Complex Networks by : Remco van der Hofstad
Download or read book Random Graphs and Complex Networks written by Remco van der Hofstad and published by Cambridge University Press. This book was released on 2017 with total page 341 pages. Available in PDF, EPUB and Kindle. Book excerpt: This classroom-tested text is the definitive introduction to the mathematics of network science, featuring examples and numerous exercises.
Download or read book Bayesian Network written by Fouad Sabry and published by One Billion Knowledgeable. This book was released on 2023-07-01 with total page 123 pages. Available in PDF, EPUB and Kindle. Book excerpt: What Is Bayesian Network A Bayesian network is a probabilistic graphical model that depicts a set of variables and their conditional relationships via a directed acyclic graph (DAG). In other words, a Bayesian network is a type of directed acyclic graph. Bayesian networks are perfect for determining the likelihood that any one of multiple possible known causes was the contributing factor in an event that has already taken place and making a prediction based on that likelihood. For instance, the probabilistic links that exist between diseases and symptoms might be represented by a Bayesian network. The network may be used to compute the odds of the presence of a variety of diseases based on the symptoms that are provided. How You Will Benefit (I) Insights, and validations about the following topics: Chapter 1: Bayesian Network Chapter 2: Likelihood Function Chapter 3: Bayesian Inference Chapter 4: Posterior Probability Chapter 5: Graphical Model Chapter 6: Expectation-Maximization Algorithm Chapter 7: Gibbs Sampling Chapter 8: Markov Random Field Chapter 9: Maximum a Posteriori Estimation Chapter 10: Bayesian Hierarchical Modeling (II) Answering the public top questions about bayesian network. (III) Real world examples for the usage of bayesian network in many fields. Who This Book Is For Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of bayesian network. What is Artificial Intelligence Series The artificial intelligence book series provides comprehensive coverage in over 200 topics. Each ebook covers a specific Artificial Intelligence topic in depth, written by experts in the field. The series aims to give readers a thorough understanding of the concepts, techniques, history and applications of artificial intelligence. Topics covered include machine learning, deep learning, neural networks, computer vision, natural language processing, robotics, ethics and more. The ebooks are written for professionals, students, and anyone interested in learning about the latest developments in this rapidly advancing field. The artificial intelligence book series provides an in-depth yet accessible exploration, from the fundamental concepts to the state-of-the-art research. With over 200 volumes, readers gain a thorough grounding in all aspects of Artificial Intelligence. The ebooks are designed to build knowledge systematically, with later volumes building on the foundations laid by earlier ones. This comprehensive series is an indispensable resource for anyone seeking to develop expertise in artificial intelligence.
Book Synopsis Markov Random Fields in Image Segmentation by : Zoltan Kato
Download or read book Markov Random Fields in Image Segmentation written by Zoltan Kato and published by Now Pub. This book was released on 2012-09 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt: Markov Random Fields in Image Segmentation provides an introduction to the fundamentals of Markovian modeling in image segmentation as well as a brief overview of recent advances in the field. Segmentation is formulated within an image labeling framework, where the problem is reduced to assigning labels to pixels. In a probabilistic approach, label dependencies are modeled by Markov random fields (MRF) and an optimal labeling is determined by Bayesian estimation, in particular maximum a posteriori (MAP) estimation. The main advantage of MRF models is that prior information can be imposed locally through clique potentials. MRF models usually yield a non-convex energy function. The minimization of this function is crucial in order to find the most likely segmentation according to the MRF model. Classical optimization algorithms including simulated annealing and deterministic relaxation are treated along with more recent graph cut-based algorithms. The primary goal of this monograph is to demonstrate the basic steps to construct an easily applicable MRF segmentation model and further develop its multi-scale and hierarchical implementations as well as their combination in a multilayer model. Representative examples from remote sensing and biological imaging are analyzed in full detail to illustrate the applicability of these MRF models. Furthermore, a sample implementation of the most important segmentation algorithms is available as supplementary software. Markov Random Fields in Image Segmentation is an invaluable resource for every student, engineer, or researcher dealing with Markovian modeling for image segmentation.
Book Synopsis Image Analysis, Random Fields and Markov Chain Monte Carlo Methods by : Gerhard Winkler
Download or read book Image Analysis, Random Fields and Markov Chain Monte Carlo Methods written by Gerhard Winkler and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book is concerned with a probabilistic approach for image analysis, mostly from the Bayesian point of view, and the important Markov chain Monte Carlo methods commonly used....This book will be useful, especially to researchers with a strong background in probability and an interest in image analysis. The author has presented the theory with rigor...he doesn’t neglect applications, providing numerous examples of applications to illustrate the theory." -- MATHEMATICAL REVIEWS
Book Synopsis Theory of Markets by : Bertrand M. Roehner
Download or read book Theory of Markets written by Bertrand M. Roehner and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 419 pages. Available in PDF, EPUB and Kindle. Book excerpt: Book titles, because they are compromises between concision and precision, provide but an approximate description of real content. For this book an al ternative and more comprehensive title would be: An investigation of spatial arbitrage as an introduction to the theory of commodity markets: trade and space-time patterns of price fluctuations. In this title, both the specificities and the limitations of our approach are emphasized. Firstly, our approach con centrates on the basic mechanisms of spatial arbitrage, leaving aside a number of accessory facets of international trade such as the impact of quotas or of ex change rates. Secondly, for the sake of simplicity we restrict ourselves to single commodity markets; the interrelationship of different goods on multi-commodity markets are only occasionally mentioned. The previous restrictions, however drastic they may at first appear delimit and define what can be considered as the core of the process of trade and of spatial transactions. Having thus simplified the object of our study, we are able to tackle the problem in a systematic way and to model spatial differentials along with their relationships to the volume of trade both in eqUilibrium and in non-equilibrium situations. As far as the subtitle of the book is concerned, we shall postpone the discussion of what is meant by the expression "analytical economics" until the concluding chapter.
Book Synopsis Safety, Reliability, Risk and Life-Cycle Performance of Structures and Infrastructures by : George Deodatis
Download or read book Safety, Reliability, Risk and Life-Cycle Performance of Structures and Infrastructures written by George Deodatis and published by CRC Press. This book was released on 2014-02-10 with total page 1112 pages. Available in PDF, EPUB and Kindle. Book excerpt: Safety, Reliability, Risk and Life-Cycle Performance of Structures and Infrastructures contains the plenary lectures and papers presented at the 11th International Conference on STRUCTURAL SAFETY AND RELIABILITY (ICOSSAR2013, New York, NY, USA, 16-20 June 2013), and covers major aspects of safety, reliability, risk and life-cycle performance of str