Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Radiation Heat Transfer Modelling With Computational Fluid Dynamics
Download Radiation Heat Transfer Modelling With Computational Fluid Dynamics full books in PDF, epub, and Kindle. Read online Radiation Heat Transfer Modelling With Computational Fluid Dynamics ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Computational Fluid Dynamics and Heat Transfer by : Pradip Majumdar
Download or read book Computational Fluid Dynamics and Heat Transfer written by Pradip Majumdar and published by CRC Press. This book was released on 2021-12-29 with total page 696 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a thorough understanding of fluid dynamics and heat and mass transfer. The Second Edition contains new chapters on mesh generation and computational modeling of turbulent flow. Combining theory and practice in classic problems and computer code, the text includes numerous worked-out examples. Students will be able to develop computational analysis models for complex problems more efficiently using commercial codes such as ANSYS, STAR CCM+, and COMSOL. With detailed explanations on how to implement computational methodology into computer code, students will be able to solve complex problems on their own and develop their own customized simulation models, including problems in heat transfer, mass transfer, and fluid flows. These problems are solved and illustrated in step-by-step derivations and figures. FEATURES Provides unified coverage of computational heat transfer and fluid dynamics Covers basic concepts and then applies computational methods for problem analysis and solution Covers most common higher-order time-approximation schemes Covers most common and advanced linear solvers Contains new chapters on mesh generation and computer modeling of turbulent flow Computational Fluid Dynamics and Heat Transfer, Second Edition, is valuable to engineering instructors and students taking courses in computational heat transfer and computational fluid dynamics.
Book Synopsis Radiation Heat Transfer Modelling with Computational Fluid Dynamics by : Yehuda Sinai
Download or read book Radiation Heat Transfer Modelling with Computational Fluid Dynamics written by Yehuda Sinai and published by CRC Press. This book was released on 2022-06-21 with total page 215 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book serves as a preliminary reference for the principles of thermal radiation and its modelling in computational fluid dynamics (CFD) simulations. Radiation Heat Transfer Modelling with Computational Fluid Dynamics covers strategies and processes for synthesizing radiation with CFD setups, computational techniques for solving the radiative transfer equation, the strengths and weaknesses thereof, boundary and initial conditions and relevant guidelines. Describing the strategic planning of a typical project, the book includes the spectroscopic properties of gases, some particulates and porous media. FEATURES Fills a gap between existing CFD and thermal radiation textbooks and elaborates on some aspects of user manuals. Aims at (1) CFD practitioners who are newcomers to thermal radiation and are looking for a preliminary introduction thereon and (2) modellers familiar with thermal radiation looking for a precursory introduction to CFD. The book is tilted somewhat towards the first group. Provides guidelines for choosing the right model, the strategic planning of the modelling and its implementation. Outlines the pitfalls of some solution techniques. Describes how radiation is included in the variety of boundary condition types offered by CFD codes. Helps to develop the practical skills required to plan, implement and interpret thermal radiation within the typical CFD code. Addresses a wide variety of physical circumstances in which thermal radiation plays a role. Offers ample references for readers searching for additional details. Includes several examples of practical applications, including fire, a utility boiler and car headlights in cold environments. This book is intended for researchers and professionals who wish to simulate problems that involve fluid flow and heat transfer with thermal radiation.
Book Synopsis Computational Fluid Dynamics and Heat Transfer by : Ryoichi Amano
Download or read book Computational Fluid Dynamics and Heat Transfer written by Ryoichi Amano and published by WIT Press. This book was released on 2011 with total page 513 pages. Available in PDF, EPUB and Kindle. Book excerpt: Heat transfer and fluid flow issues are of great significance and this state-of-the-art edited book with reference to new and innovative numerical methods will make a contribution for researchers in academia and research organizations, as well as industrial scientists and college students. The book provides comprehensive chapters on research and developments in emerging topics in computational methods, e.g., the finite volume method, finite element method as well as turbulent flow computational methods. Fundamentals of the numerical methods, comparison of various higher-order schemes for convection-diffusion terms, turbulence modeling, the pressure-velocity coupling, mesh generation and the handling of arbitrary geometries are presented. Results from engineering applications are provided. Chapters have been co-authored by eminent researchers.
Book Synopsis Computational Fluid Dynamics in Fire Engineering by : Guan Heng Yeoh
Download or read book Computational Fluid Dynamics in Fire Engineering written by Guan Heng Yeoh and published by Butterworth-Heinemann. This book was released on 2009-04-20 with total page 545 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fire and combustion presents a significant engineering challenge to mechanical, civil and dedicated fire engineers, as well as specialists in the process and chemical, safety, buildings and structural fields. We are reminded of the tragic outcomes of 'untenable' fire disasters such as at King's Cross underground station or Switzerland's St Gotthard tunnel. In these and many other cases, computational fluid dynamics (CFD) is at the forefront of active research into unravelling the probable causes of fires and helping to design structures and systems to ensure that they are less likely in the future. Computational fluid dynamics (CFD) is routinely used as an analysis tool in fire and combustion engineering as it possesses the ability to handle the complex geometries and characteristics of combustion and fire. This book shows engineering students and professionals how to understand and use this powerful tool in the study of combustion processes, and in the engineering of safer or more fire resistant (or conversely, more fire-efficient) structures.No other book is dedicated to computer-based fire dynamics tools and systems. It is supported by a rigorous pedagogy, including worked examples to illustrate the capabilities of different models, an introduction to the essential aspects of fire physics, examination and self-test exercises, fully worked solutions and a suite of accompanying software for use in industry standard modeling systems. - Computational Fluid Dynamics (CFD) is widely used in engineering analysis; this is the only book dedicated to CFD modeling analysis in fire and combustion engineering - Strong pedagogic features mean this book can be used as a text for graduate level mechanical, civil, structural and fire engineering courses, while its coverage of the latest techniques and industry standard software make it an important reference for researchers and professional engineers in the mechanical and structural sectors, and by fire engineers, safety consultants and regulators - Strong author team (CUHK is a recognized centre of excellence in fire eng) deliver an expert package for students and professionals, showing both theory and applications. Accompanied by CFD modeling code and ready to use simulations to run in industry-standard ANSYS-CFX and Fluent software
Book Synopsis Computational Fluid Dynamics by : Jiyuan Tu
Download or read book Computational Fluid Dynamics written by Jiyuan Tu and published by Butterworth-Heinemann. This book was released on 2012-11-07 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to CFD fundamentals and using commercial CFD software to solve engineering problems, designed for the wide variety of engineering students new to CFD, and for practicing engineers learning CFD for the first time. Combining an appropriate level of mathematical background, worked examples, computer screen shots, and step by step processes, this book walks the reader through modeling and computing, as well as interpreting CFD results. The first book in the field aimed at CFD users rather than developers. New to this edition: A more comprehensive coverage of CFD techniques including discretisation via finite element and spectral element as well as finite difference and finite volume methods and multigrid method. Coverage of different approaches to CFD grid generation in order to closely match how CFD meshing is being used in industry. Additional coverage of high-pressure fluid dynamics and meshless approach to provide a broader overview of the application areas where CFD can be used. 20% new content .
Book Synopsis Thermal Modelling of Power Transformers Using Computational Fluid Dynamics by : Saeed Khandan Siar
Download or read book Thermal Modelling of Power Transformers Using Computational Fluid Dynamics written by Saeed Khandan Siar and published by BoD – Books on Demand. This book was released on 2024-10-16 with total page 166 pages. Available in PDF, EPUB and Kindle. Book excerpt: Power transformers have become vital equipment in providing sustainable power networks and minimizing thermal stress is essential for enhancing their lifespan and reliability. This thesis uses Computational Fluid Dynamics (CFD) to analyze the thermal behavior of power transformers. It examines the effects of non-uniform heat loss distributions and analyses both steady-state and transient thermal behavior in natural and forced cooling modes. It is vital to calculate the hot spot factor under various conditions, especially during transient cooling condition. This research addresses how different parameters impact the hot spot factor and temperature distribution at different operating condition, using measurements and CFD simulations to identify the optimal cooling designs.
Download or read book Heat and Mass Transfer written by and published by BoD – Books on Demand. This book was released on 2019-09-11 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: Heat and mass transfer is the core science for many industrial processes as well as technical and scientific devices. Automotive, aerospace, power generation (both by conventional and renewable energies), industrial equipment and rotating machinery, materials and chemical processing, and many other industries are requiring heat and mass transfer processes. Since the early studies in the seventeenth and eighteenth centuries, there has been tremendous technical progress and scientific advances in the knowledge of heat and mass transfer, where modeling and simulation developments are increasingly contributing to the current state of the art. Heat and Mass Transfer - Advances in Science and Technology Applications aims at providing researchers and practitioners with a valuable compendium of significant advances in the field.
Book Synopsis Computational Fluid Dynamics in Industrial Combustion by : Jr., Charles E. Baukal
Download or read book Computational Fluid Dynamics in Industrial Combustion written by Jr., Charles E. Baukal and published by CRC Press. This book was released on 2000-10-26 with total page 647 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although many books have been written on computational fluid dynamics (CFD) and many written on combustion, most contain very limited coverage of the combination of CFD and industrial combustion. Furthermore, most of these books are written at an advanced academic level, emphasize theory over practice, and provide little help to engineers who need
Book Synopsis Computational Fluid Dynamics by : Jiyuan Tu
Download or read book Computational Fluid Dynamics written by Jiyuan Tu and published by Butterworth-Heinemann. This book was released on 2012-11-27 with total page 457 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Fluid Dynamics, Second Edition, provides an introduction to CFD fundamentals that focuses on the use of commercial CFD software to solve engineering problems. This new edition provides expanded coverage of CFD techniques including discretisation via finite element and spectral element as well as finite difference and finite volume methods and multigrid method. There is additional coverage of high-pressure fluid dynamics and meshless approach to provide a broader overview of the application areas where CFD can be used. The book combines an appropriate level of mathematical background, worked examples, computer screen shots, and step-by-step processes, walking students through modeling and computing as well as interpretation of CFD results. It is ideal for senior level undergraduate and graduate students of mechanical, aerospace, civil, chemical, environmental and marine engineering. It can also help beginner users of commercial CFD software tools (including CFX and FLUENT). - A more comprehensive coverage of CFD techniques including discretisation via finite element and spectral element as well as finite difference and finite volume methods and multigrid method - Coverage of different approaches to CFD grid generation in order to closely match how CFD meshing is being used in industry - Additional coverage of high-pressure fluid dynamics and meshless approach to provide a broader overview of the application areas where CFD can be used - 20% new content
Book Synopsis Radiative Heat Transfer by : Michael F. Modest
Download or read book Radiative Heat Transfer written by Michael F. Modest and published by McGraw-Hill Science, Engineering & Mathematics. This book was released on 1993 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Offers a comprehensive treatment of heat transfer. In addition to the standard topics usually covered, it also includes a number of modern state-of-the-art topics including: radiative properties of particles, generation of P-N approximation and collimated irradiation.
Book Synopsis Computational Fluid Dynamics Applied to Waste-to-Energy Processes by : Valter Silva
Download or read book Computational Fluid Dynamics Applied to Waste-to-Energy Processes written by Valter Silva and published by Butterworth-Heinemann. This book was released on 2020-06-16 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Fluid Dynamics Applied to Waste-to-Energy Processes: A Hands-On Approach provides the key knowledge needed to perform CFD simulations using powerful commercial software tools. The book focuses on fluid mechanics, heat transfer and chemical reactions. To do so, the fundamentals of CFD are presented, with the entire workflow broken into manageable pieces that detail geometry preparation, meshing, problem setting, model implementation and post-processing actions. Pathways for process optimization using CFD integrated with Design of Experiments are also explored. The book's combined approach of theory, application and hands-on practice allows engineering graduate students, advanced undergraduates and industry practitioners to develop their own simulations. - Provides the skills needed to perform real-life simulation calculations through a combination of mathematical background and real-world examples, including step-by-step tutorials - Presents worked examples in complex processes as combustion or gasification involving fluid dynamics, heat and mass transfer, and complex chemistry sets
Book Synopsis Towards Nanofluids for Large-Scale Industrial Applications by : Bharat A. Bhanvase
Download or read book Towards Nanofluids for Large-Scale Industrial Applications written by Bharat A. Bhanvase and published by Elsevier. This book was released on 2024-05-03 with total page 479 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanofluids for Large-Scale Industrial Applications examines the challenges and current progress towards large-scale industrial application of nanofluids, summarizing and bringing together varied current research strands and providing potential solutions pertaining to the scientific, economic, and social barriers that currently exist. Opening with an introduction to nanofluid synthesis, types, and properties, this book traverses the potential large-scale applications and commercialisation of nanofluids in industrial heating/cooling, solar energy systems, refrigeration systems, automotive systems, and various chemical processes and manufacturing systems. This book provides knowledge of a vast area of applications of nanofluids in industries. Thus, it also has potential to encourage and trigger the minds of researchers to discover more about nanofluids, investigate the gaps, overcome the challenges, and provide future directions for newer applications and develop nanofluids further. The book is written chiefly for graduate/postdoc level students and researchers/academics teaching or studying in chemical and thermal engineering and who are focused on heat transfer enhancement, thermal energy, nanofluids, and nano-enhanced energy systems such as solar thermal systems. - Examines the challenges and current progress towards implementing large-scale industrial application of nanofluids - Addresses current gaps in research, explores challenges and controversies as well as weaknesses and strengths versus alternative solutions - Aims to bridge the gap between fundamental research and potential industrial-scale utilization in the future by providing pathways towards convenient and sustainable scale-up - Meets a need to compile all current information and knowledge from studies and research related to large-scale nanofluids applications in one single resource
Book Synopsis Parallel Computational Fluid Dynamics 2005 by : A. Deane
Download or read book Parallel Computational Fluid Dynamics 2005 written by A. Deane and published by Elsevier. This book was released on 2006-09-06 with total page 539 pages. Available in PDF, EPUB and Kindle. Book excerpt: The proceedings from Parallel CFD 2005 covering all aspects of the theory and applications of parallel computational fluid dynamics from the traditional to the more contemporary issues.- Report on current research in the field in an area which is rapidly changing- Subject is important to all interested in solving large fluid dynamics problems- Interdisciplinary activity. Contributions include scientists with a variety of backgrounds
Author :C. Anandharamakrishnan Publisher :Springer Science & Business Media ISBN 13 :1461479908 Total Pages :92 pages Book Rating :4.4/5 (614 download)
Book Synopsis Computational Fluid Dynamics Applications in Food Processing by : C. Anandharamakrishnan
Download or read book Computational Fluid Dynamics Applications in Food Processing written by C. Anandharamakrishnan and published by Springer Science & Business Media. This book was released on 2013-08-13 with total page 92 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Fluid Dynamics (CFD) has been applied extensively to great benefit in the food processing sector. Its numerous applications include: predicting the gas flow pattern and particle histories, such as temperature, velocity, residence time, and impact position during spray drying; modeling of ovens to provide information about temperature and airflow pattern throughout the baking chamber to enhance heat transfer and in turn final product quality; designing hybrid heating ovens, such as microwave-infrared, infrared-electrical or microwave-electrical ovens for rapid baking; model the dynamics of gastrointestinal contents during digestion based on the motor response of the GI tract and the physicochemical properties of luminal contents; retort processing of canned solid and liquid foods for understanding and optimization of the heat transfer processes. This Brief will recapitulate the various applications of CFD modeling, discuss the recent developments in this field, and identify the strengths and weaknesses of CFD when applied in the food industry.
Book Synopsis Fundamentals of the Finite Element Method for Heat and Fluid Flow by : Roland W. Lewis
Download or read book Fundamentals of the Finite Element Method for Heat and Fluid Flow written by Roland W. Lewis and published by John Wiley and Sons. This book was released on 2008-02-07 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: Heat transfer is the area of engineering science which describes the energy transport between material bodies due to a difference in temperature. The three different modes of heat transport are conduction, convection and radiation. In most problems, these three modes exist simultaneously. However, the significance of these modes depends on the problems studied and often, insignificant modes are neglected. Very often books published on Computational Fluid Dynamics using the Finite Element Method give very little or no significance to thermal or heat transfer problems. From the research point of view, it is important to explain the handling of various types of heat transfer problems with different types of complex boundary conditions. Problems with slow fluid motion and heat transfer can be difficult problems to handle. Therefore, the complexity of combined fluid flow and heat transfer problems should not be underestimated and should be dealt with carefully. This book: Is ideal for teaching senior undergraduates the fundamentals of how to use the Finite Element Method to solve heat transfer and fluid dynamics problems Explains how to solve various heat transfer problems with different types of boundary conditions Uses recent computational methods and codes to handle complex fluid motion and heat transfer problems Includes a large number of examples and exercises on heat transfer problems In an era of parallel computing, computational efficiency and easy to handle codes play a major part. Bearing all these points in mind, the topics covered on combined flow and heat transfer in this book will be an asset for practising engineers and postgraduate students. Other topics of interest for the heat transfer community, such as heat exchangers and radiation heat transfer, are also included.
Book Synopsis Computational Fluid Dynamics in Food Processing by : Da-Wen Sun
Download or read book Computational Fluid Dynamics in Food Processing written by Da-Wen Sun and published by CRC Press. This book was released on 2018-10-26 with total page 614 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since many processes in the food industry involve fluid flow and heat and mass transfer, Computational Fluid Dynamics (CFD) provides a powerful early-stage simulation tool for gaining a qualitative and quantitative assessment of the performance of food processing, allowing engineers to test concepts all the way through the development of a process or system. Published in 2007, the first edition was the first book to address the use of CFD in food processing applications, and its aims were to present a comprehensive review of CFD applications for the food industry and pinpoint the research and development trends in the development of the technology; to provide the engineer and technologist working in research, development, and operations in the food industry with critical, comprehensive, and readily accessible information on the art and science of CFD; and to serve as an essential reference source to undergraduate and postgraduate students and researchers in universities and research institutions. This will continue to be the purpose of this second edition. In the second edition, in order to reflect the most recent research and development trends in the technology, only a few original chapters are updated with the latest developments. Therefore, this new edition mostly contains new chapters covering the analysis and optimization of cold chain facilities, simulation of thermal processing and modeling of heat exchangers, and CFD applications in other food processes.
Book Synopsis Parallel Computational Fluid Dynamics '97 by : D. Emerson
Download or read book Parallel Computational Fluid Dynamics '97 written by D. Emerson and published by Elsevier. This book was released on 1998-04-17 with total page 697 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Fluid Dynamics (CFD) is a discipline that has always been in the vanguard of the exploitation of emerging and developing technologies. Advances in both algorithms and computers have rapidly been absorbed by the CFD community in its quest for more accurate simulations and reductions in the time to solution. Within this context, parallel computing has played an increasingly important role. Moreover, the uptake of parallel computing has brought the CFD community into ever-closer contact with hardware vendors and computer scientists. The multidisciplinary subject of parallel CFD and its rapidly evolving nature, in terms of hardware and software, requires a regular international meeting of this nature to keep abreast of the most recent developments. Parallel CFD '97 is part of an annual conference series dedicated to the discussion of recent developments and applications of parallel computing in the field of CFD and related disciplines. This was the 9th in the series, and since the inaugural conference in 1989, many new developments and technologies have emerged. The intervening years have also proved to be extremely volatile for many hardware vendors and a number of companies appeared and then disappeared. However, the belief that parallel computing is the only way forward has remained undiminished. Moreover, the increasing reliability and acceptance of parallel computers has seen many commercial companies now offering parallel versions of their codes, many developed within the EC funded EUROPORT activity, but generally for more modest numbers of processors. It is clear that industry has not moved to large scale parallel systems but it has shown a keen interest in more modest parallel systems recognising that parallel computing will play an important role in the future. This book forms the proceedings of the CFD '97 conference, which was organised by the the Computational Engineering Group at Daresbury Laboratory and held in Manchester, England, on May 19-21 1997. The sessions involved papers on many diverse subjects including turbulence, reactive flows, adaptive schemes, unsteady flows, unstructured mesh applications, industrial applications, developments in software tools and environments, climate modelling, parallel algorithms, evaluation of computer architectures and a special session devoted to parallel CFD at the AEREA research centres. This year's conference, like its predecessors, saw a continued improvement in both the quantity and quality of contributed papers. Since the conference series began many significant milestones have been acheived. For example in 1994, Massively Parallel Processing (MPP) became a reality with the advent of Cray T3D. This, of course, has brought with it the new challenge of scalability for both algorithms and architectures. In the 12 months since the 1996 conference, two more major milestones were achieved: microprocessors with a peak performance of a Gflop/s became available and the world's first Tflop/s calculation was performed. In the 1991 proceedings, the editors indicated that a Tflop/s computer was likely to be available in the latter half of this decade. On December 4th 1996, Intel achieved this breakthrough on the Linpack benchmark using 7,264 (200MHz) Pentium Pro microprocessors as part of the ASCI Red project. With the developments in MPP, the rapid rise of SMP architectures and advances in PC technology, the future for parallel CFD looks both promising and challenging.