Quadratic Number Fields

Download Quadratic Number Fields PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030786528
Total Pages : 348 pages
Book Rating : 4.0/5 (37 download)

DOWNLOAD NOW!


Book Synopsis Quadratic Number Fields by : Franz Lemmermeyer

Download or read book Quadratic Number Fields written by Franz Lemmermeyer and published by Springer Nature. This book was released on 2021-09-18 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: This undergraduate textbook provides an elegant introduction to the arithmetic of quadratic number fields, including many topics not usually covered in books at this level. Quadratic fields offer an introduction to algebraic number theory and some of its central objects: rings of integers, the unit group, ideals and the ideal class group. This textbook provides solid grounding for further study by placing the subject within the greater context of modern algebraic number theory. Going beyond what is usually covered at this level, the book introduces the notion of modularity in the context of quadratic reciprocity, explores the close links between number theory and geometry via Pell conics, and presents applications to Diophantine equations such as the Fermat and Catalan equations as well as elliptic curves. Throughout, the book contains extensive historical comments, numerous exercises (with solutions), and pointers to further study. Assuming a moderate background in elementary number theory and abstract algebra, Quadratic Number Fields offers an engaging first course in algebraic number theory, suitable for upper undergraduate students.

Algebraic Theory of Quadratic Numbers

Download Algebraic Theory of Quadratic Numbers PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461477174
Total Pages : 206 pages
Book Rating : 4.4/5 (614 download)

DOWNLOAD NOW!


Book Synopsis Algebraic Theory of Quadratic Numbers by : Mak Trifković

Download or read book Algebraic Theory of Quadratic Numbers written by Mak Trifković and published by Springer Science & Business Media. This book was released on 2013-09-14 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: By focusing on quadratic numbers, this advanced undergraduate or master’s level textbook on algebraic number theory is accessible even to students who have yet to learn Galois theory. The techniques of elementary arithmetic, ring theory and linear algebra are shown working together to prove important theorems, such as the unique factorization of ideals and the finiteness of the ideal class group. The book concludes with two topics particular to quadratic fields: continued fractions and quadratic forms. The treatment of quadratic forms is somewhat more advanced than usual, with an emphasis on their connection with ideal classes and a discussion of Bhargava cubes. The numerous exercises in the text offer the reader hands-on computational experience with elements and ideals in quadratic number fields. The reader is also asked to fill in the details of proofs and develop extra topics, like the theory of orders. Prerequisites include elementary number theory and a basic familiarity with ring theory.

The Algebraic Theory of Quadratic Forms

Download The Algebraic Theory of Quadratic Forms PDF Online Free

Author :
Publisher : Addison-Wesley
ISBN 13 : 9780805356663
Total Pages : 344 pages
Book Rating : 4.3/5 (566 download)

DOWNLOAD NOW!


Book Synopsis The Algebraic Theory of Quadratic Forms by : Tsit-Yuen Lam

Download or read book The Algebraic Theory of Quadratic Forms written by Tsit-Yuen Lam and published by Addison-Wesley. This book was released on 1980 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt:

The Theory of Algebraic Number Fields

Download The Theory of Algebraic Number Fields PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3662035456
Total Pages : 360 pages
Book Rating : 4.6/5 (62 download)

DOWNLOAD NOW!


Book Synopsis The Theory of Algebraic Number Fields by : David Hilbert

Download or read book The Theory of Algebraic Number Fields written by David Hilbert and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: A translation of Hilberts "Theorie der algebraischen Zahlkörper" best known as the "Zahlbericht", first published in 1897, in which he provides an elegantly integrated overview of the development of algebraic number theory up to the end of the nineteenth century. The Zahlbericht also provided a firm foundation for further research in the theory, and can be seen as the starting point for all twentieth century investigations into the subject, as well as reciprocity laws and class field theory. This English edition further contains an introduction by F. Lemmermeyer and N. Schappacher.

Jacobi Forms, Finite Quadratic Modules and Weil Representations over Number Fields

Download Jacobi Forms, Finite Quadratic Modules and Weil Representations over Number Fields PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319129163
Total Pages : 150 pages
Book Rating : 4.3/5 (191 download)

DOWNLOAD NOW!


Book Synopsis Jacobi Forms, Finite Quadratic Modules and Weil Representations over Number Fields by : Hatice Boylan

Download or read book Jacobi Forms, Finite Quadratic Modules and Weil Representations over Number Fields written by Hatice Boylan and published by Springer. This book was released on 2014-12-05 with total page 150 pages. Available in PDF, EPUB and Kindle. Book excerpt: The new theory of Jacobi forms over totally real number fields introduced in this monograph is expected to give further insight into the arithmetic theory of Hilbert modular forms, its L-series, and into elliptic curves over number fields. This work is inspired by the classical theory of Jacobi forms over the rational numbers, which is an indispensable tool in the arithmetic theory of elliptic modular forms, elliptic curves, and in many other disciplines in mathematics and physics. Jacobi forms can be viewed as vector valued modular forms which take values in so-called Weil representations. Accordingly, the first two chapters develop the theory of finite quadratic modules and associated Weil representations over number fields. This part might also be interesting for those who are merely interested in the representation theory of Hilbert modular groups. One of the main applications is the complete classification of Jacobi forms of singular weight over an arbitrary totally real number field.

Binary Quadratic Forms

Download Binary Quadratic Forms PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540463682
Total Pages : 328 pages
Book Rating : 4.5/5 (44 download)

DOWNLOAD NOW!


Book Synopsis Binary Quadratic Forms by : Johannes Buchmann

Download or read book Binary Quadratic Forms written by Johannes Buchmann and published by Springer Science & Business Media. This book was released on 2007-06-22 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book deals with algorithmic problems related to binary quadratic forms. It uniquely focuses on the algorithmic aspects of the theory. The book introduces the reader to important areas of number theory such as diophantine equations, reduction theory of quadratic forms, geometry of numbers and algebraic number theory. The book explains applications to cryptography and requires only basic mathematical knowledge. The author is a world leader in number theory.

Number Fields

Download Number Fields PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319902334
Total Pages : 213 pages
Book Rating : 4.3/5 (199 download)

DOWNLOAD NOW!


Book Synopsis Number Fields by : Daniel A. Marcus

Download or read book Number Fields written by Daniel A. Marcus and published by Springer. This book was released on 2018-07-05 with total page 213 pages. Available in PDF, EPUB and Kindle. Book excerpt: Requiring no more than a basic knowledge of abstract algebra, this text presents the mathematics of number fields in a straightforward, pedestrian manner. It therefore avoids local methods and presents proofs in a way that highlights the important parts of the arguments. Readers are assumed to be able to fill in the details, which in many places are left as exercises.

Algebraic Number Fields

Download Algebraic Number Fields PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821804294
Total Pages : 288 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Algebraic Number Fields by : Gerald J. Janusz

Download or read book Algebraic Number Fields written by Gerald J. Janusz and published by American Mathematical Soc.. This book was released on 1996 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text presents the basic information about finite dimensional extension fields of the rational numbers, algebraic number fields, and the rings of algebraic integers in them. The important theorems regarding the units of the ring of integers and the class group are proved and illustrated with many examples given in detail. The completion of an algebraic number field at a valuation is discussed in detail and then used to provide economical proofs of global results. The book contains many concrete examples illustrating the computation of class groups, class numbers, and Hilbert class fields. Exercises are provided to indicate applications of the general theory.

Rational Quadratic Forms

Download Rational Quadratic Forms PDF Online Free

Author :
Publisher : Courier Dover Publications
ISBN 13 : 0486466701
Total Pages : 429 pages
Book Rating : 4.4/5 (864 download)

DOWNLOAD NOW!


Book Synopsis Rational Quadratic Forms by : J. W. S. Cassels

Download or read book Rational Quadratic Forms written by J. W. S. Cassels and published by Courier Dover Publications. This book was released on 2008-08-08 with total page 429 pages. Available in PDF, EPUB and Kindle. Book excerpt: Exploration of quadratic forms over rational numbers and rational integers offers elementary introduction. Covers quadratic forms over local fields, forms with integral coefficients, reduction theory for definite forms, more. 1968 edition.

Algebraic Number Theory

Download Algebraic Number Theory PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1439845999
Total Pages : 424 pages
Book Rating : 4.4/5 (398 download)

DOWNLOAD NOW!


Book Synopsis Algebraic Number Theory by : Richard A. Mollin

Download or read book Algebraic Number Theory written by Richard A. Mollin and published by CRC Press. This book was released on 2011-01-05 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bringing the material up to date to reflect modern applications, this second edition has been completely rewritten and reorganized to incorporate a new style, methodology, and presentation. It offers a more complete and involved treatment of Galois theory, a more comprehensive section on Pollard's cubic factoring algorithm, and more detailed explanations of proofs to provide a sound understanding of challenging material. This edition also studies binary quadratic forms and compares the ideal and form class groups. The text includes convenient cross-referencing, a comprehensive index, and numerous exercises and applications.

Number Theory in Function Fields

Download Number Theory in Function Fields PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1475760469
Total Pages : 355 pages
Book Rating : 4.4/5 (757 download)

DOWNLOAD NOW!


Book Synopsis Number Theory in Function Fields by : Michael Rosen

Download or read book Number Theory in Function Fields written by Michael Rosen and published by Springer Science & Business Media. This book was released on 2013-04-18 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: Early in the development of number theory, it was noticed that the ring of integers has many properties in common with the ring of polynomials over a finite field. The first part of this book illustrates this relationship by presenting analogues of various theorems. The later chapters probe the analogy between global function fields and algebraic number fields. Topics include the ABC-conjecture, Brumer-Stark conjecture, and Drinfeld modules.

Binary Quadratic Forms

Download Binary Quadratic Forms PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461245427
Total Pages : 249 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Binary Quadratic Forms by : Duncan A. Buell

Download or read book Binary Quadratic Forms written by Duncan A. Buell and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first coherent exposition of the theory of binary quadratic forms was given by Gauss in the Disqnisitiones Arithmeticae. During the nine teenth century, as the theory of ideals and the rudiments of algebraic number theory were developed, it became clear that this theory of bi nary quadratic forms, so elementary and computationally explicit, was indeed just a special case of a much more elega,nt and abstract theory which, unfortunately, is not computationally explicit. In recent years the original theory has been laid aside. Gauss's proofs, which involved brute force computations that can be done in what is essentially a two dimensional vector space, have been dropped in favor of n-dimensional arguments which prove the general theorems of algebraic number the ory. In consequence, this elegant, yet pleasantly simple, theory has been neglected even as some of its results have become extremely useful in certain computations. I find this neglect unfortunate, because binary quadratic forms have two distinct attractions. First, the subject involves explicit computa tion and many of the computer programs can be quite simple. The use of computers in experimenting with examples is both meaningful and enjoyable; one can actually discover interesting results by com puting examples, noticing patterns in the "data," and then proving that the patterns result from the conclusion of some provable theorem.

Primes of the Form X2 + Ny2

Download Primes of the Form X2 + Ny2 PDF Online Free

Author :
Publisher : Wiley-Interscience
ISBN 13 :
Total Pages : 380 pages
Book Rating : 4.3/5 (97 download)

DOWNLOAD NOW!


Book Synopsis Primes of the Form X2 + Ny2 by : David A. Cox

Download or read book Primes of the Form X2 + Ny2 written by David A. Cox and published by Wiley-Interscience. This book was released on 1989-09-28 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern number theory began with the work of Euler and Gauss to understand and extend the many unsolved questions left behind by Fermat. In the course of their investigations, they uncovered new phenomena in need of explanation, which over time led to the discovery of field theory and its intimate connection with complex multiplication. While most texts concentrate on only the elementary or advanced aspects of this story, Primes of the Form x2 + ny2 begins with Fermat and explains how his work ultimately gave birth to quadratic reciprocity and the genus theory of quadratic forms. Further, the book shows how the results of Euler and Gauss can be fully understood only in the context of class field theory. Finally, in order to bring class field theory down to earth, the book explores some of the magnificent formulas of complex multiplication. The central theme of the book is the story of which primes p can be expressed in the form x2 + ny2. An incomplete answer is given using quadratic forms. A better though abstract answer comes from class field theory, and finally, a concrete answer is provided by complex multiplication. Along the way, the reader is introduced to some wonderful number theory. Numerous exercises and examples are included. The book is written to be enjoyed by readers with modest mathematical backgrounds. Chapter 1 uses basic number theory and abstract algebra, while chapters 2 and 3 require Galois theory and complex analysis, respectively.

A Classical Invitation to Algebraic Numbers and Class Fields

Download A Classical Invitation to Algebraic Numbers and Class Fields PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461299500
Total Pages : 344 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis A Classical Invitation to Algebraic Numbers and Class Fields by : Harvey Cohn

Download or read book A Classical Invitation to Algebraic Numbers and Class Fields written by Harvey Cohn and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Artin's 1932 Göttingen Lectures on Class Field Theory" and "Connections between Algebrac Number Theory and Integral Matrices"

Arithmetic of Quadratic Forms

Download Arithmetic of Quadratic Forms PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521649964
Total Pages : 292 pages
Book Rating : 4.6/5 (499 download)

DOWNLOAD NOW!


Book Synopsis Arithmetic of Quadratic Forms by : Yoshiyuki Kitaoka

Download or read book Arithmetic of Quadratic Forms written by Yoshiyuki Kitaoka and published by Cambridge University Press. This book was released on 1999-04-29 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides an introduction to quadratic forms.

Class Groups of Number Fields and Related Topics

Download Class Groups of Number Fields and Related Topics PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 981151514X
Total Pages : 182 pages
Book Rating : 4.8/5 (115 download)

DOWNLOAD NOW!


Book Synopsis Class Groups of Number Fields and Related Topics by : Kalyan Chakraborty

Download or read book Class Groups of Number Fields and Related Topics written by Kalyan Chakraborty and published by Springer Nature. This book was released on 2020-01-17 with total page 182 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gathers original research papers and survey articles presented at the “International Conference on Class Groups of Number Fields and Related Topics,” held at Harish-Chandra Research Institute, Allahabad, India, on September 4–7, 2017. It discusses the fundamental research problems that arise in the study of class groups of number fields and introduces new techniques and tools to study these problems. Topics in this book include class groups and class numbers of number fields, units, the Kummer–Vandiver conjecture, class number one problem, Diophantine equations, Thue equations, continued fractions, Euclidean number fields, heights, rational torsion points on elliptic curves, cyclotomic numbers, Jacobi sums, and Dedekind zeta values. This book is a valuable resource for undergraduate and graduate students of mathematics as well as researchers interested in class groups of number fields and their connections to other branches of mathematics. New researchers to the field will also benefit immensely from the diverse problems discussed. All the contributing authors are leading academicians, scientists, researchers, and scholars.

A Classical Introduction to Modern Number Theory

Download A Classical Introduction to Modern Number Theory PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9780387973296
Total Pages : 416 pages
Book Rating : 4.9/5 (732 download)

DOWNLOAD NOW!


Book Synopsis A Classical Introduction to Modern Number Theory by : Kenneth Ireland

Download or read book A Classical Introduction to Modern Number Theory written by Kenneth Ireland and published by Springer Science & Business Media. This book was released on 1990-09-07 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: This well-developed, accessible text details the historical development of the subject throughout. It also provides wide-ranging coverage of significant results with comparatively elementary proofs, some of them new. This second edition contains two new chapters that provide a complete proof of the Mordel-Weil theorem for elliptic curves over the rational numbers and an overview of recent progress on the arithmetic of elliptic curves.