Python Text Processing with Nltk 2.0 Cookbook

Download Python Text Processing with Nltk 2.0 Cookbook PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1849516391
Total Pages : 123 pages
Book Rating : 4.8/5 (495 download)

DOWNLOAD NOW!


Book Synopsis Python Text Processing with Nltk 2.0 Cookbook by : Jacob Perkins

Download or read book Python Text Processing with Nltk 2.0 Cookbook written by Jacob Perkins and published by Packt Publishing Ltd. This book was released on 2011-05-19 with total page 123 pages. Available in PDF, EPUB and Kindle. Book excerpt: The learn-by-doing approach of this book will enable you to dive right into the heart of text processing from the very first page. Each recipe is carefully designed to fulfill your appetite for Natural Language Processing. Packed with numerous illustrative examples and code samples, it will make the task of using the NLTK for Natural Language Processing easy and straightforward. This book is for Python programmers who want to quickly get to grips with using the NLTK for Natural Language Processing. Familiarity with basic text processing concepts is required. Programmers experienced in the NLTK will also find it useful. Students of linguistics will find it invaluable.

Python 3 Text Processing with NLTK 3 Cookbook

Download Python 3 Text Processing with NLTK 3 Cookbook PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1782167862
Total Pages : 530 pages
Book Rating : 4.7/5 (821 download)

DOWNLOAD NOW!


Book Synopsis Python 3 Text Processing with NLTK 3 Cookbook by : Jacob Perkins

Download or read book Python 3 Text Processing with NLTK 3 Cookbook written by Jacob Perkins and published by Packt Publishing Ltd. This book was released on 2014-08-26 with total page 530 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended for Python programmers interested in learning how to do natural language processing. Maybe you’ve learned the limits of regular expressions the hard way, or you’ve realized that human language cannot be deterministically parsed like a computer language. Perhaps you have more text than you know what to do with, and need automated ways to analyze and structure that text. This Cookbook will show you how to train and use statistical language models to process text in ways that are practically impossible with standard programming tools. A basic knowledge of Python and the basic text processing concepts is expected. Some experience with regular expressions will also be helpful.

Python Natural Language Processing Cookbook

Download Python Natural Language Processing Cookbook PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1838987789
Total Pages : 285 pages
Book Rating : 4.8/5 (389 download)

DOWNLOAD NOW!


Book Synopsis Python Natural Language Processing Cookbook by : Zhenya Antić

Download or read book Python Natural Language Processing Cookbook written by Zhenya Antić and published by Packt Publishing Ltd. This book was released on 2021-03-19 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get to grips with solving real-world NLP problems, such as dependency parsing, information extraction, topic modeling, and text data visualization Key Features Analyze varying complexities of text using popular Python packages such as NLTK, spaCy, sklearn, and gensim Implement common and not-so-common linguistic processing tasks using Python libraries Overcome the common challenges faced while implementing NLP pipelines Book DescriptionPython is the most widely used language for natural language processing (NLP) thanks to its extensive tools and libraries for analyzing text and extracting computer-usable data. This book will take you through a range of techniques for text processing, from basics such as parsing the parts of speech to complex topics such as topic modeling, text classification, and visualization. Starting with an overview of NLP, the book presents recipes for dividing text into sentences, stemming and lemmatization, removing stopwords, and parts of speech tagging to help you to prepare your data. You’ll then learn ways of extracting and representing grammatical information, such as dependency parsing and anaphora resolution, discover different ways of representing the semantics using bag-of-words, TF-IDF, word embeddings, and BERT, and develop skills for text classification using keywords, SVMs, LSTMs, and other techniques. As you advance, you’ll also see how to extract information from text, implement unsupervised and supervised techniques for topic modeling, and perform topic modeling of short texts, such as tweets. Additionally, the book shows you how to develop chatbots using NLTK and Rasa and visualize text data. By the end of this NLP book, you’ll have developed the skills to use a powerful set of tools for text processing.What you will learn Become well-versed with basic and advanced NLP techniques in Python Represent grammatical information in text using spaCy, and semantic information using bag-of-words, TF-IDF, and word embeddings Perform text classification using different methods, including SVMs and LSTMs Explore different techniques for topic modeling such as K-means, LDA, NMF, and BERT Work with visualization techniques such as NER and word clouds for different NLP tools Build a basic chatbot using NLTK and Rasa Extract information from text using regular expression techniques and statistical and deep learning tools Who this book is for This book is for data scientists and professionals who want to learn how to work with text. Intermediate knowledge of Python will help you to make the most out of this book. If you are an NLP practitioner, this book will serve as a code reference when working on your projects.

Natural Language Processing with Python

Download Natural Language Processing with Python PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 0596555717
Total Pages : 506 pages
Book Rating : 4.5/5 (965 download)

DOWNLOAD NOW!


Book Synopsis Natural Language Processing with Python by : Steven Bird

Download or read book Natural Language Processing with Python written by Steven Bird and published by "O'Reilly Media, Inc.". This book was released on 2009-06-12 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a highly accessible introduction to natural language processing, the field that supports a variety of language technologies, from predictive text and email filtering to automatic summarization and translation. With it, you'll learn how to write Python programs that work with large collections of unstructured text. You'll access richly annotated datasets using a comprehensive range of linguistic data structures, and you'll understand the main algorithms for analyzing the content and structure of written communication. Packed with examples and exercises, Natural Language Processing with Python will help you: Extract information from unstructured text, either to guess the topic or identify "named entities" Analyze linguistic structure in text, including parsing and semantic analysis Access popular linguistic databases, including WordNet and treebanks Integrate techniques drawn from fields as diverse as linguistics and artificial intelligence This book will help you gain practical skills in natural language processing using the Python programming language and the Natural Language Toolkit (NLTK) open source library. If you're interested in developing web applications, analyzing multilingual news sources, or documenting endangered languages -- or if you're simply curious to have a programmer's perspective on how human language works -- you'll find Natural Language Processing with Python both fascinating and immensely useful.

Python Feature Engineering Cookbook

Download Python Feature Engineering Cookbook PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1804615390
Total Pages : 386 pages
Book Rating : 4.8/5 (46 download)

DOWNLOAD NOW!


Book Synopsis Python Feature Engineering Cookbook by : Soledad Galli

Download or read book Python Feature Engineering Cookbook written by Soledad Galli and published by Packt Publishing Ltd. This book was released on 2022-10-31 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: Create end-to-end, reproducible feature engineering pipelines that can be deployed into production using open-source Python libraries Key Features Learn and implement feature engineering best practices Reinforce your learning with the help of multiple hands-on recipes Build end-to-end feature engineering pipelines that are performant and reproducible Book DescriptionFeature engineering, the process of transforming variables and creating features, albeit time-consuming, ensures that your machine learning models perform seamlessly. This second edition of Python Feature Engineering Cookbook will take the struggle out of feature engineering by showing you how to use open source Python libraries to accelerate the process via a plethora of practical, hands-on recipes. This updated edition begins by addressing fundamental data challenges such as missing data and categorical values, before moving on to strategies for dealing with skewed distributions and outliers. The concluding chapters show you how to develop new features from various types of data, including text, time series, and relational databases. With the help of numerous open source Python libraries, you'll learn how to implement each feature engineering method in a performant, reproducible, and elegant manner. By the end of this Python book, you will have the tools and expertise needed to confidently build end-to-end and reproducible feature engineering pipelines that can be deployed into production.What you will learn Impute missing data using various univariate and multivariate methods Encode categorical variables with one-hot, ordinal, and count encoding Handle highly cardinal categorical variables Transform, discretize, and scale your variables Create variables from date and time with pandas and Feature-engine Combine variables into new features Extract features from text as well as from transactional data with Featuretools Create features from time series data with tsfresh Who this book is for This book is for machine learning and data science students and professionals, as well as software engineers working on machine learning model deployment, who want to learn more about how to transform their data and create new features to train machine learning models in a better way.

Natural Language Processing with Python Cookbook

Download Natural Language Processing with Python Cookbook PDF Online Free

Author :
Publisher :
ISBN 13 : 9781787289321
Total Pages : 316 pages
Book Rating : 4.2/5 (893 download)

DOWNLOAD NOW!


Book Synopsis Natural Language Processing with Python Cookbook by : Krishna Bhavsar

Download or read book Natural Language Processing with Python Cookbook written by Krishna Bhavsar and published by . This book was released on 2017-11-24 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn the tricks and tips that will help you design Text Analytics solutionsAbout This Book* Independent recipes that will teach you how to efficiently perform Natural Language Processing in Python* Use dictionaries to create your own named entities using this easy-to-follow guide* Learn how to implement NLTK for various scenarios with the help of example-rich recipes to take you beyond basic Natural Language ProcessingWho This Book Is ForThis book is intended for data scientists, data analysts, and data science professionals who want to upgrade their existing skills to implement advanced text analytics using NLP. Some basic knowledge of Natural Language Processing is recommended.What You Will Learn* Explore corpus management using internal and external corpora* Learn WordNet usage and a couple of simple application assignments using WordNet* Operate on raw text* Learn to perform tokenization, stemming, lemmatization, and spelling corrections, stop words removals, and more* Understand regular expressions for pattern matching* Learn to use and write your own POS taggers and grammars* Learn to evaluate your own trained models* Explore Deep Learning techniques in NLP* Generate Text from Nietzsche's writing using LSTM* Utilize the BABI dataset and LSTM to model episodesIn DetailNatural Language Processing (NLP) is a field of computer science, artificial intelligence, and computational linguistics concerned with the interactions between computers and human (natural) languages; in particular, it's about programming computers to fruitfully process large natural language corpora.This book includes unique recipes that will teach you various aspects of performing Natural Language Processing with NLTK-the leading Python platform for the task. You will come across various recipes during the course, covering (among other topics) natural language understanding, Natural Language Processing, and syntactic analysis. You will learn how to understand language, plan sentences, and work around various ambiguities. You will learn how to efficiently use NLTK and implement text classification, identify parts of speech, tag words, and more. You will also learn how to analyze sentence structures and master lexical analysis, syntactic and semantic analysis, pragmatic analysis, and the application of deep learning techniques.By the end of this book, you will have all the knowledge you need to implement Natural Language Processing with Python.Style and ApproachThis book's rich collection of recipes will come in handy when you are working with Natural Language Processing with Python. Addressing your common and not-so-common pain points, this is a book that you must have on the shelf.

Natural Language Processing Recipes

Download Natural Language Processing Recipes PDF Online Free

Author :
Publisher : Apress
ISBN 13 : 148424267X
Total Pages : 253 pages
Book Rating : 4.4/5 (842 download)

DOWNLOAD NOW!


Book Synopsis Natural Language Processing Recipes by : Akshay Kulkarni

Download or read book Natural Language Processing Recipes written by Akshay Kulkarni and published by Apress. This book was released on 2019-01-29 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt: Implement natural language processing applications with Python using a problem-solution approach. This book has numerous coding exercises that will help you to quickly deploy natural language processing techniques, such as text classification, parts of speech identification, topic modeling, text summarization, text generation, entity extraction, and sentiment analysis. Natural Language Processing Recipes starts by offering solutions for cleaning and preprocessing text data and ways to analyze it with advanced algorithms. You’ll see practical applications of the semantic as well as syntactic analysis of text, as well as complex natural language processing approaches that involve text normalization, advanced preprocessing, POS tagging, and sentiment analysis. You will also learn various applications of machine learning and deep learning in natural language processing. By using the recipes in this book, you will have a toolbox of solutions to apply to your own projects in the real world, making your development time quicker and more efficient. What You Will LearnApply NLP techniques using Python libraries such as NLTK, TextBlob, spaCy, Stanford CoreNLP, and many more Implement the concepts of information retrieval, text summarization, sentiment analysis, and other advanced natural language processing techniques. Identify machine learning and deep learning techniques for natural language processing and natural language generation problems Who This Book Is ForData scientists who want to refresh and learn various concepts of natural language processing through coding exercises.

Machine Learning with Python Cookbook

Download Machine Learning with Python Cookbook PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1491989335
Total Pages : 305 pages
Book Rating : 4.4/5 (919 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning with Python Cookbook by : Chris Albon

Download or read book Machine Learning with Python Cookbook written by Chris Albon and published by "O'Reilly Media, Inc.". This book was released on 2018-03-09 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt: This practical guide provides nearly 200 self-contained recipes to help you solve machine learning challenges you may encounter in your daily work. If you’re comfortable with Python and its libraries, including pandas and scikit-learn, you’ll be able to address specific problems such as loading data, handling text or numerical data, model selection, and dimensionality reduction and many other topics. Each recipe includes code that you can copy and paste into a toy dataset to ensure that it actually works. From there, you can insert, combine, or adapt the code to help construct your application. Recipes also include a discussion that explains the solution and provides meaningful context. This cookbook takes you beyond theory and concepts by providing the nuts and bolts you need to construct working machine learning applications. You’ll find recipes for: Vectors, matrices, and arrays Handling numerical and categorical data, text, images, and dates and times Dimensionality reduction using feature extraction or feature selection Model evaluation and selection Linear and logical regression, trees and forests, and k-nearest neighbors Support vector machines (SVM), naïve Bayes, clustering, and neural networks Saving and loading trained models

Computational Linguistics and Intelligent Text Processing

Download Computational Linguistics and Intelligent Text Processing PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642286038
Total Pages : 639 pages
Book Rating : 4.6/5 (422 download)

DOWNLOAD NOW!


Book Synopsis Computational Linguistics and Intelligent Text Processing by : Alexander Gelbukh

Download or read book Computational Linguistics and Intelligent Text Processing written by Alexander Gelbukh and published by Springer Science & Business Media. This book was released on 2012-02-24 with total page 639 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-volume set, consisting of LNCS 7181 and LNCS 7182, constitutes the thoroughly refereed proceedings of the 13th International Conference on Computer Linguistics and Intelligent Processing, held in New Delhi, India, in March 2012. The total of 92 full papers were carefully reviewed and selected for inclusion in the proceedings. The contents have been ordered according to the following topical sections: NLP system architecture; lexical resources; morphology and syntax; word sense disambiguation and named entity recognition; semantics and discourse; sentiment analysis, opinion mining, and emotions; natural language generation; machine translation and multilingualism; text categorization and clustering; information extraction and text mining; information retrieval and question answering; document summarization; and applications.

Exploratory Data Analysis with Python Cookbook

Download Exploratory Data Analysis with Python Cookbook PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1803246138
Total Pages : 383 pages
Book Rating : 4.8/5 (32 download)

DOWNLOAD NOW!


Book Synopsis Exploratory Data Analysis with Python Cookbook by : Ayodele Oluleye

Download or read book Exploratory Data Analysis with Python Cookbook written by Ayodele Oluleye and published by Packt Publishing Ltd. This book was released on 2023-06-30 with total page 383 pages. Available in PDF, EPUB and Kindle. Book excerpt: Extract valuable insights from data by leveraging various analysis and visualization techniques with this comprehensive guide Purchase of the print or Kindle book includes a free PDF eBook Key Features Gain practical experience in conducting EDA on a single variable of interest in Python Learn the different techniques for analyzing and exploring tabular, time series, and textual data in Python Get well versed in data visualization using leading Python libraries like Matplotlib and seaborn Book DescriptionIn today's data-centric world, the ability to extract meaningful insights from vast amounts of data has become a valuable skill across industries. Exploratory Data Analysis (EDA) lies at the heart of this process, enabling us to comprehend, visualize, and derive valuable insights from various forms of data. This book is a comprehensive guide to Exploratory Data Analysis using the Python programming language. It provides practical steps needed to effectively explore, analyze, and visualize structured and unstructured data. It offers hands-on guidance and code for concepts such as generating summary statistics, analyzing single and multiple variables, visualizing data, analyzing text data, handling outliers, handling missing values and automating the EDA process. It is suited for data scientists, data analysts, researchers or curious learners looking to gain essential knowledge and practical steps for analyzing vast amounts of data to uncover insights. Python is an open-source general purpose programming language which is used widely for data science and data analysis given its simplicity and versatility. It offers several libraries which can be used to clean, analyze, and visualize data. In this book, we will explore popular Python libraries such as Pandas, Matplotlib, and Seaborn and provide workable code for analyzing data in Python using these libraries. By the end of this book, you will have gained comprehensive knowledge about EDA and mastered the powerful set of EDA techniques and tools required for analyzing both structured and unstructured data to derive valuable insights.What you will learn Perform EDA with leading python data visualization libraries Execute univariate, bivariate and multivariate analysis on tabular data Uncover patterns and relationships within time series data Identify hidden patterns within textual data Learn different techniques to prepare data for analysis Overcome challenge of outliers and missing values during data analysis Leverage automated EDA for fast and efficient analysis Who this book is forWhether you are a data analyst, data scientist, researcher or a curious learner looking to analyze structured and unstructured data, this book will appeal to you. It aims to empower you with essential knowledge and practical skills for analyzing and visualizing data to uncover insights. It covers several EDA concepts and provides hands-on instructions on how these can be applied using various Python libraries. Familiarity with basic statistical concepts and foundational knowledge of python programming will help you understand the content better and maximize your learning experience.

Artificial Intelligence: Concepts, Methodologies, Tools, and Applications

Download Artificial Intelligence: Concepts, Methodologies, Tools, and Applications PDF Online Free

Author :
Publisher : IGI Global
ISBN 13 : 152251760X
Total Pages : 3095 pages
Book Rating : 4.5/5 (225 download)

DOWNLOAD NOW!


Book Synopsis Artificial Intelligence: Concepts, Methodologies, Tools, and Applications by : Management Association, Information Resources

Download or read book Artificial Intelligence: Concepts, Methodologies, Tools, and Applications written by Management Association, Information Resources and published by IGI Global. This book was released on 2016-12-12 with total page 3095 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ongoing advancements in modern technology have led to significant developments in artificial intelligence. With the numerous applications available, it becomes imperative to conduct research and make further progress in this field. Artificial Intelligence: Concepts, Methodologies, Tools, and Applications provides a comprehensive overview of the latest breakthroughs and recent progress in artificial intelligence. Highlighting relevant technologies, uses, and techniques across various industries and settings, this publication is a pivotal reference source for researchers, professionals, academics, upper-level students, and practitioners interested in emerging perspectives in the field of artificial intelligence.

IPython Interactive Computing and Visualization Cookbook

Download IPython Interactive Computing and Visualization Cookbook PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 178328482X
Total Pages : 899 pages
Book Rating : 4.7/5 (832 download)

DOWNLOAD NOW!


Book Synopsis IPython Interactive Computing and Visualization Cookbook by : Cyrille Rossant

Download or read book IPython Interactive Computing and Visualization Cookbook written by Cyrille Rossant and published by Packt Publishing Ltd. This book was released on 2014-09-25 with total page 899 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intended to anyone interested in numerical computing and data science: students, researchers, teachers, engineers, analysts, hobbyists... Basic knowledge of Python/NumPy is recommended. Some skills in mathematics will help you understand the theory behind the computational methods.

Python Data Analysis Cookbook

Download Python Data Analysis Cookbook PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1785283855
Total Pages : 462 pages
Book Rating : 4.7/5 (852 download)

DOWNLOAD NOW!


Book Synopsis Python Data Analysis Cookbook by : Ivan Idris

Download or read book Python Data Analysis Cookbook written by Ivan Idris and published by Packt Publishing Ltd. This book was released on 2016-07-22 with total page 462 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over 140 practical recipes to help you make sense of your data with ease and build production-ready data apps About This Book Analyze Big Data sets, create attractive visualizations, and manipulate and process various data types Packed with rich recipes to help you learn and explore amazing algorithms for statistics and machine learning Authored by Ivan Idris, expert in python programming and proud author of eight highly reviewed books Who This Book Is For This book teaches Python data analysis at an intermediate level with the goal of transforming you from journeyman to master. Basic Python and data analysis skills and affinity are assumed. What You Will Learn Set up reproducible data analysis Clean and transform data Apply advanced statistical analysis Create attractive data visualizations Web scrape and work with databases, Hadoop, and Spark Analyze images and time series data Mine text and analyze social networks Use machine learning and evaluate the results Take advantage of parallelism and concurrency In Detail Data analysis is a rapidly evolving field and Python is a multi-paradigm programming language suitable for object-oriented application development and functional design patterns. As Python offers a range of tools and libraries for all purposes, it has slowly evolved as the primary language for data science, including topics on: data analysis, visualization, and machine learning. Python Data Analysis Cookbook focuses on reproducibility and creating production-ready systems. You will start with recipes that set the foundation for data analysis with libraries such as matplotlib, NumPy, and pandas. You will learn to create visualizations by choosing color maps and palettes then dive into statistical data analysis using distribution algorithms and correlations. You'll then help you find your way around different data and numerical problems, get to grips with Spark and HDFS, and then set up migration scripts for web mining. In this book, you will dive deeper into recipes on spectral analysis, smoothing, and bootstrapping methods. Moving on, you will learn to rank stocks and check market efficiency, then work with metrics and clusters. You will achieve parallelism to improve system performance by using multiple threads and speeding up your code. By the end of the book, you will be capable of handling various data analysis techniques in Python and devising solutions for problem scenarios. Style and Approach The book is written in “cookbook” style striving for high realism in data analysis. Through the recipe-based format, you can read each recipe separately as required and immediately apply the knowledge gained.

Python Natural Language Processing

Download Python Natural Language Processing PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1787285529
Total Pages : 476 pages
Book Rating : 4.7/5 (872 download)

DOWNLOAD NOW!


Book Synopsis Python Natural Language Processing by : Jalaj Thanaki

Download or read book Python Natural Language Processing written by Jalaj Thanaki and published by Packt Publishing Ltd. This book was released on 2017-07-31 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: Leverage the power of machine learning and deep learning to extract information from text data About This Book Implement Machine Learning and Deep Learning techniques for efficient natural language processing Get started with NLTK and implement NLP in your applications with ease Understand and interpret human languages with the power of text analysis via Python Who This Book Is For This book is intended for Python developers who wish to start with natural language processing and want to make their applications smarter by implementing NLP in them. What You Will Learn Focus on Python programming paradigms, which are used to develop NLP applications Understand corpus analysis and different types of data attribute. Learn NLP using Python libraries such as NLTK, Polyglot, SpaCy, Standford CoreNLP and so on Learn about Features Extraction and Feature selection as part of Features Engineering. Explore the advantages of vectorization in Deep Learning. Get a better understanding of the architecture of a rule-based system. Optimize and fine-tune Supervised and Unsupervised Machine Learning algorithms for NLP problems. Identify Deep Learning techniques for Natural Language Processing and Natural Language Generation problems. In Detail This book starts off by laying the foundation for Natural Language Processing and why Python is one of the best options to build an NLP-based expert system with advantages such as Community support, availability of frameworks and so on. Later it gives you a better understanding of available free forms of corpus and different types of dataset. After this, you will know how to choose a dataset for natural language processing applications and find the right NLP techniques to process sentences in datasets and understand their structure. You will also learn how to tokenize different parts of sentences and ways to analyze them. During the course of the book, you will explore the semantic as well as syntactic analysis of text. You will understand how to solve various ambiguities in processing human language and will come across various scenarios while performing text analysis. You will learn the very basics of getting the environment ready for natural language processing, move on to the initial setup, and then quickly understand sentences and language parts. You will learn the power of Machine Learning and Deep Learning to extract information from text data. By the end of the book, you will have a clear understanding of natural language processing and will have worked on multiple examples that implement NLP in the real world. Style and approach This book teaches the readers various aspects of natural language Processing using NLTK. It takes the reader from the basic to advance level in a smooth way.

Machine Learning with Python Cookbook

Download Machine Learning with Python Cookbook PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1098135695
Total Pages : 416 pages
Book Rating : 4.0/5 (981 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning with Python Cookbook by : Kyle Gallatin

Download or read book Machine Learning with Python Cookbook written by Kyle Gallatin and published by "O'Reilly Media, Inc.". This book was released on 2023-07-27 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: This practical guide provides more than 200 self-contained recipes to help you solve machine learning challenges you may encounter in your work. If you're comfortable with Python and its libraries, including pandas and scikit-learn, you'll be able to address specific problems, from loading data to training models and leveraging neural networks. Each recipe in this updated edition includes code that you can copy, paste, and run with a toy dataset to ensure that it works. From there, you can adapt these recipes according to your use case or application. Recipes include a discussion that explains the solution and provides meaningful context. Go beyond theory and concepts by learning the nuts and bolts you need to construct working machine learning applications. You'll find recipes for: Vectors, matrices, and arrays Working with data from CSV, JSON, SQL, databases, cloud storage, and other sources Handling numerical and categorical data, text, images, and dates and times Dimensionality reduction using feature extraction or feature selection Model evaluation and selection Linear and logical regression, trees and forests, and k-nearest neighbors Supporting vector machines (SVM), naäve Bayes, clustering, and tree-based models Saving, loading, and serving trained models from multiple frameworks

Natural Language Processing for Global and Local Business

Download Natural Language Processing for Global and Local Business PDF Online Free

Author :
Publisher : IGI Global
ISBN 13 : 179984241X
Total Pages : 452 pages
Book Rating : 4.7/5 (998 download)

DOWNLOAD NOW!


Book Synopsis Natural Language Processing for Global and Local Business by : Pinarbasi, Fatih

Download or read book Natural Language Processing for Global and Local Business written by Pinarbasi, Fatih and published by IGI Global. This book was released on 2020-07-31 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: The concept of natural language processing has become one of the preferred methods to better understand consumers, especially in recent years when digital technologies and research methods have developed exponentially. It has become apparent that when responding to international consumers through multiple platforms and speaking in the same language in which the consumers express themselves, companies are improving their standings within the public sphere. Natural Language Processing for Global and Local Business provides research exploring the theoretical and practical phenomenon of natural language processing through different languages and platforms in terms of today's conditions. Featuring coverage on a broad range of topics such as computational linguistics, information engineering, and translation technology, this book is ideally designed for IT specialists, academics, researchers, students, and business professionals seeking current research on improving and understanding the consumer experience.

Blueprints for Text Analytics Using Python

Download Blueprints for Text Analytics Using Python PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1492074039
Total Pages : 504 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Blueprints for Text Analytics Using Python by : Jens Albrecht

Download or read book Blueprints for Text Analytics Using Python written by Jens Albrecht and published by "O'Reilly Media, Inc.". This book was released on 2020-12-04 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: Turning text into valuable information is essential for businesses looking to gain a competitive advantage. With recent improvements in natural language processing (NLP), users now have many options for solving complex challenges. But it's not always clear which NLP tools or libraries would work for a business's needs, or which techniques you should use and in what order. This practical book provides data scientists and developers with blueprints for best practice solutions to common tasks in text analytics and natural language processing. Authors Jens Albrecht, Sidharth Ramachandran, and Christian Winkler provide real-world case studies and detailed code examples in Python to help you get started quickly. Extract data from APIs and web pages Prepare textual data for statistical analysis and machine learning Use machine learning for classification, topic modeling, and summarization Explain AI models and classification results Explore and visualize semantic similarities with word embeddings Identify customer sentiment in product reviews Create a knowledge graph based on named entities and their relations