Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Purushottam W Laud
Download Purushottam W Laud full books in PDF, epub, and Kindle. Read online Purushottam W Laud ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis purushottam w. laud by : bayesian nonparametric and covariate analysis of failure time data
Download or read book purushottam w. laud written by bayesian nonparametric and covariate analysis of failure time data and published by . This book was released on 1996 with total page 15 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Bayesian Thinking in Biostatistics by : Gary L Rosner
Download or read book Bayesian Thinking in Biostatistics written by Gary L Rosner and published by CRC Press. This book was released on 2021-03-15 with total page 622 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for Bayesian Thinking in Biostatistics: "This thoroughly modern Bayesian book ...is a 'must have' as a textbook or a reference volume. Rosner, Laud and Johnson make the case for Bayesian approaches by melding clear exposition on methodology with serious attention to a broad array of illuminating applications. These are activated by excellent coverage of computing methods and provision of code. Their content on model assessment, robustness, data-analytic approaches and predictive assessments...are essential to valid practice. The numerous exercises and professional advice make the book ideal as a text for an intermediate-level course..." -Thomas Louis, Johns Hopkins University "The book introduces all the important topics that one would usually cover in a beginning graduate level class on Bayesian biostatistics. The careful introduction of the Bayesian viewpoint and the mechanics of implementing Bayesian inference in the early chapters makes it a complete self- contained introduction to Bayesian inference for biomedical problems....Another great feature for using this book as a textbook is the inclusion of extensive problem sets, going well beyond construed and simple problems. Many exercises consider real data and studies, providing very useful examples in addition to serving as problems." - Peter Mueller, University of Texas With a focus on incorporating sensible prior distributions and discussions on many recent developments in Bayesian methodologies, Bayesian Thinking in Biostatistics considers statistical issues in biomedical research. The book emphasizes greater collaboration between biostatisticians and biomedical researchers. The text includes an overview of Bayesian statistics, a discussion of many of the methods biostatisticians frequently use, such as rates and proportions, regression models, clinical trial design, and methods for evaluating diagnostic tests. Key Features Applies a Bayesian perspective to applications in biomedical science Highlights advances in clinical trial design Goes beyond standard statistical models in the book by introducing Bayesian nonparametric methods and illustrating their uses in data analysis Emphasizes estimation of biomedically relevant quantities and assessment of the uncertainty in this estimation Provides programs in the BUGS language, with variants for JAGS and Stan, that one can use or adapt for one's own research The intended audience includes graduate students in biostatistics, epidemiology, and biomedical researchers, in general Authors Gary L. Rosner is the Eli Kennerly Marshall, Jr., Professor of Oncology at the Johns Hopkins School of Medicine and Professor of Biostatistics at the Johns Hopkins Bloomberg School of Public Health. Purushottam (Prakash) W. Laud is Professor in the Division of Biostatistics, and Director of the Biostatistics Shared Resource for the Cancer Center, at the Medical College of Wisconsin. Wesley O. Johnson is professor Emeritus in the Department of Statistics as the University of California, Irvine.
Book Synopsis Frontiers of Statistical Decision Making and Bayesian Analysis by : Ming-Hui Chen
Download or read book Frontiers of Statistical Decision Making and Bayesian Analysis written by Ming-Hui Chen and published by Springer Science & Business Media. This book was released on 2010-07-24 with total page 631 pages. Available in PDF, EPUB and Kindle. Book excerpt: Research in Bayesian analysis and statistical decision theory is rapidly expanding and diversifying, making it increasingly more difficult for any single researcher to stay up to date on all current research frontiers. This book provides a review of current research challenges and opportunities. While the book can not exhaustively cover all current research areas, it does include some exemplary discussion of most research frontiers. Topics include objective Bayesian inference, shrinkage estimation and other decision based estimation, model selection and testing, nonparametric Bayes, the interface of Bayesian and frequentist inference, data mining and machine learning, methods for categorical and spatio-temporal data analysis and posterior simulation methods. Several major application areas are covered: computer models, Bayesian clinical trial design, epidemiology, phylogenetics, bioinformatics, climate modeling and applications in political science, finance and marketing. As a review of current research in Bayesian analysis the book presents a balance between theory and applications. The lack of a clear demarcation between theoretical and applied research is a reflection of the highly interdisciplinary and often applied nature of research in Bayesian statistics. The book is intended as an update for researchers in Bayesian statistics, including non-statisticians who make use of Bayesian inference to address substantive research questions in other fields. It would also be useful for graduate students and research scholars in statistics or biostatistics who wish to acquaint themselves with current research frontiers.
Book Synopsis Foundations of Statistics for Data Scientists by : Alan Agresti
Download or read book Foundations of Statistics for Data Scientists written by Alan Agresti and published by CRC Press. This book was released on 2021-11-22 with total page 486 pages. Available in PDF, EPUB and Kindle. Book excerpt: Foundations of Statistics for Data Scientists: With R and Python is designed as a textbook for a one- or two-term introduction to mathematical statistics for students training to become data scientists. It is an in-depth presentation of the topics in statistical science with which any data scientist should be familiar, including probability distributions, descriptive and inferential statistical methods, and linear modeling. The book assumes knowledge of basic calculus, so the presentation can focus on "why it works" as well as "how to do it." Compared to traditional "mathematical statistics" textbooks, however, the book has less emphasis on probability theory and more emphasis on using software to implement statistical methods and to conduct simulations to illustrate key concepts. All statistical analyses in the book use R software, with an appendix showing the same analyses with Python. The book also introduces modern topics that do not normally appear in mathematical statistics texts but are highly relevant for data scientists, such as Bayesian inference, generalized linear models for non-normal responses (e.g., logistic regression and Poisson loglinear models), and regularized model fitting. The nearly 500 exercises are grouped into "Data Analysis and Applications" and "Methods and Concepts." Appendices introduce R and Python and contain solutions for odd-numbered exercises. The book's website has expanded R, Python, and Matlab appendices and all data sets from the examples and exercises.
Book Synopsis Handbook of Survival Analysis by : John P. Klein
Download or read book Handbook of Survival Analysis written by John P. Klein and published by CRC Press. This book was released on 2016-04-19 with total page 635 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Survival Analysis presents modern techniques and research problems in lifetime data analysis. This area of statistics deals with time-to-event data that is complicated by censoring and the dynamic nature of events occurring in time. With chapters written by leading researchers in the field, the handbook focuses on advances in survival analysis techniques, covering classical and Bayesian approaches. It gives a complete overview of the current status of survival analysis and should inspire further research in the field. Accessible to a wide range of readers, the book provides: An introduction to various areas in survival analysis for graduate students and novices A reference to modern investigations into survival analysis for more established researchers A text or supplement for a second or advanced course in survival analysis A useful guide to statistical methods for analyzing survival data experiments for practicing statisticians
Book Synopsis Probability and Statistical Inference by : Miltiadis C. Mavrakakis
Download or read book Probability and Statistical Inference written by Miltiadis C. Mavrakakis and published by CRC Press. This book was released on 2021-03-28 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: Probability and Statistical Inference: From Basic Principles to Advanced Models covers aspects of probability, distribution theory, and inference that are fundamental to a proper understanding of data analysis and statistical modelling. It presents these topics in an accessible manner without sacrificing mathematical rigour, bridging the gap between the many excellent introductory books and the more advanced, graduate-level texts. The book introduces and explores techniques that are relevant to modern practitioners, while being respectful to the history of statistical inference. It seeks to provide a thorough grounding in both the theory and application of statistics, with even the more abstract parts placed in the context of a practical setting. Features: •Complete introduction to mathematical probability, random variables, and distribution theory. •Concise but broad account of statistical modelling, covering topics such as generalised linear models, survival analysis, time series, and random processes. •Extensive discussion of the key concepts in classical statistics (point estimation, interval estimation, hypothesis testing) and the main techniques in likelihood-based inference. •Detailed introduction to Bayesian statistics and associated topics. •Practical illustration of some of the main computational methods used in modern statistical inference (simulation, boostrap, MCMC). This book is for students who have already completed a first course in probability and statistics, and now wish to deepen and broaden their understanding of the subject. It can serve as a foundation for advanced undergraduate or postgraduate courses. Our aim is to challenge and excite the more mathematically able students, while providing explanations of statistical concepts that are more detailed and approachable than those in advanced texts. This book is also useful for data scientists, researchers, and other applied practitioners who want to understand the theory behind the statistical methods used in their fields.
Book Synopsis Stochastic Processes with R by : Olga Korosteleva
Download or read book Stochastic Processes with R written by Olga Korosteleva and published by CRC Press. This book was released on 2022-02-14 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic Processes with R: An Introduction cuts through the heavy theory that is present in most courses on random processes and serves as practical guide to simulated trajectories and real-life applications for stochastic processes. The light yet detailed text provides a solid foundation that is an ideal companion for undergraduate statistics students looking to familiarize themselves with stochastic processes before going on to more advanced courses. Key Features Provides complete R codes for all simulations and calculations Substantial scientific or popular applications of each process with occasional statistical analysis Helpful definitions and examples are provided for each process End of chapter exercises cover theoretical applications and practice calculations
Book Synopsis Bayesian Theory and Applications by : Paul Damien
Download or read book Bayesian Theory and Applications written by Paul Damien and published by OUP Oxford. This book was released on 2013-01-24 with total page 717 pages. Available in PDF, EPUB and Kindle. Book excerpt: The development of hierarchical models and Markov chain Monte Carlo (MCMC) techniques forms one of the most profound advances in Bayesian analysis since the 1970s and provides the basis for advances in virtually all areas of applied and theoretical Bayesian statistics. This volume guides the reader along a statistical journey that begins with the basic structure of Bayesian theory, and then provides details on most of the past and present advances in this field. The book has a unique format. There is an explanatory chapter devoted to each conceptual advance followed by journal-style chapters that provide applications or further advances on the concept. Thus, the volume is both a textbook and a compendium of papers covering a vast range of topics. It is appropriate for a well-informed novice interested in understanding the basic approach, methods and recent applications. Because of its advanced chapters and recent work, it is also appropriate for a more mature reader interested in recent applications and developments, and who may be looking for ideas that could spawn new research. Hence, the audience for this unique book would likely include academicians/practitioners, and could likely be required reading for undergraduate and graduate students in statistics, medicine, engineering, scientific computation, business, psychology, bio-informatics, computational physics, graphical models, neural networks, geosciences, and public policy. The book honours the contributions of Sir Adrian F. M. Smith, one of the seminal Bayesian researchers, with his papers on hierarchical models, sequential Monte Carlo, and Markov chain Monte Carlo and his mentoring of numerous graduate students -the chapters are authored by prominent statisticians influenced by him. Bayesian Theory and Applications should serve the dual purpose of a reference book, and a textbook in Bayesian Statistics.
Book Synopsis Modern Data Science with R by : Benjamin S. Baumer
Download or read book Modern Data Science with R written by Benjamin S. Baumer and published by CRC Press. This book was released on 2021-03-31 with total page 830 pages. Available in PDF, EPUB and Kindle. Book excerpt: From a review of the first edition: "Modern Data Science with R... is rich with examples and is guided by a strong narrative voice. What’s more, it presents an organizing framework that makes a convincing argument that data science is a course distinct from applied statistics" (The American Statistician). Modern Data Science with R is a comprehensive data science textbook for undergraduates that incorporates statistical and computational thinking to solve real-world data problems. Rather than focus exclusively on case studies or programming syntax, this book illustrates how statistical programming in the state-of-the-art R/RStudio computing environment can be leveraged to extract meaningful information from a variety of data in the service of addressing compelling questions. The second edition is updated to reflect the growing influence of the tidyverse set of packages. All code in the book has been revised and styled to be more readable and easier to understand. New functionality from packages like sf, purrr, tidymodels, and tidytext is now integrated into the text. All chapters have been revised, and several have been split, re-organized, or re-imagined to meet the shifting landscape of best practice.
Book Synopsis Bayesian Analysis in Statistics and Econometrics by : Donald A. Berry
Download or read book Bayesian Analysis in Statistics and Econometrics written by Donald A. Berry and published by John Wiley & Sons. This book was released on 1996 with total page 610 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a definitive work that captures the current state of knowledge of Bayesian Analysis in Statistics and Econometrics and attempts to move it forward. It covers such topics as foundations, forecasting inferential matters, regression, computation and applications.
Book Synopsis Survival Analysis: State of the Art by : John P. Klein
Download or read book Survival Analysis: State of the Art written by John P. Klein and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: Survival analysis is a highly active area of research with applications spanning the physical, engineering, biological, and social sciences. In addition to statisticians and biostatisticians, researchers in this area include epidemiologists, reliability engineers, demographers and economists. The economists survival analysis by the name of duration analysis and the analysis of transition data. We attempted to bring together leading researchers, with a common interest in developing methodology in survival analysis, at the NATO Advanced Research Workshop. The research works collected in this volume are based on the presentations at the Workshop. Analysis of survival experiments is complicated by issues of censoring, where only partial observation of an individual's life length is available and left truncation, where individuals enter the study group if their life lengths exceed a given threshold time. Application of the theory of counting processes to survival analysis, as developed by the Scandinavian School, has allowed for substantial advances in the procedures for analyzing such experiments. The increased use of computer intensive solutions to inference problems in survival analysis~ in both the classical and Bayesian settings, is also evident throughout the volume. Several areas of research have received special attention in the volume.
Book Synopsis Random Number Generation and Monte Carlo Methods by : James E. Gentle
Download or read book Random Number Generation and Monte Carlo Methods written by James E. Gentle and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: Monte Carlo simulation has become one of the most important tools in all fields of science. This book surveys the basic techniques and principles of the subject, as well as general techniques useful in more complicated models and in novel settings. The emphasis throughout is on practical methods that work well in current computing environments.
Download or read book Time Series written by Raquel Prado and published by CRC Press. This book was released on 2021-07-27 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt: • Expanded on aspects of core model theory and methodology. • Multiple new examples and exercises. • Detailed development of dynamic factor models. • Updated discussion and connections with recent and current research frontiers.
Book Synopsis Handbook of Matching and Weighting Adjustments for Causal Inference by : José R. Zubizarreta
Download or read book Handbook of Matching and Weighting Adjustments for Causal Inference written by José R. Zubizarreta and published by CRC Press. This book was released on 2023-04-11 with total page 634 pages. Available in PDF, EPUB and Kindle. Book excerpt: An observational study infers the effects caused by a treatment, policy, program, intervention, or exposure in a context in which randomized experimentation is unethical or impractical. One task in an observational study is to adjust for visible pretreatment differences between the treated and control groups. Multivariate matching and weighting are two modern forms of adjustment. This handbook provides a comprehensive survey of the most recent methods of adjustment by matching, weighting, machine learning and their combinations. Three additional chapters introduce the steps from association to causation that follow after adjustments are complete. When used alone, matching and weighting do not use outcome information, so they are part of the design of an observational study. When used in conjunction with models for the outcome, matching and weighting may enhance the robustness of model-based adjustments. The book is for researchers in medicine, economics, public health, psychology, epidemiology, public program evaluation, and statistics who examine evidence of the effects on human beings of treatments, policies or exposures.
Book Synopsis Bayesian Networks by : Marco Scutari
Download or read book Bayesian Networks written by Marco Scutari and published by CRC Press. This book was released on 2021-07-28 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explains the material step-by-step starting from meaningful examples Steps detailed with R code in the spirit of reproducible research Real world data analyses from a Science paper reproduced and explained in detail Examples span a variety of fields across social and life sciences Overview of available software in and outside R
Book Synopsis Bayesian Mediation Analysis using R by : Atanu Bhattacharjee
Download or read book Bayesian Mediation Analysis using R written by Atanu Bhattacharjee and published by CRC Press. This book was released on 2024-07-04 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: Delve into the realm of statistical methodology for mediation analysis with a Bayesian perspective in high dimensional data through this comprehensive guide. Focused on various forms of time-to-event data methodologies, this book helps readers master the application of Bayesian mediation analysis using R. Across ten chapters, this book explores concepts of mediation analysis, survival analysis, accelerated failure time modeling, longitudinal data analysis, and competing risk modeling. Each chapter progressively unravels intricate topics, from the foundations of Bayesian approaches to advanced techniques like variable selection, bivariate survival models, and Dirichlet process priors. With practical examples and step-by-step guidance, this book empowers readers to navigate the intricate landscape of high-dimensional data analysis, fostering a deep understanding of its applications and significance in diverse fields.
Download or read book Sampling written by Sharon L. Lohr and published by CRC Press. This book was released on 2021-11-30 with total page 678 pages. Available in PDF, EPUB and Kindle. Book excerpt: "The level is appropriate for an upper-level undergraduate or graduate-level statistics major. Sampling: Design and Analysis (SDA) will also benefit a non-statistics major with a desire to understand the concepts of sampling from a finite population. A student with patience to delve into the rigor of survey statistics will gain even more from the content that SDA offers. The updates to SDA have potential to enrich traditional survey sampling classes at both the undergraduate and graduate levels. The new discussions of low response rates, non-probability surveys, and internet as a data collection mode hold particular value, as these statistical issues have become increasingly important in survey practice in recent years... I would eagerly adopt the new edition of SDA as the required textbook." (Emily Berg, Iowa State University) What is the unemployment rate? What is the total area of land planted with soybeans? How many persons have antibodies to the virus causing COVID-19? Sampling: Design and Analysis, Third Edition shows you how to design and analyze surveys to answer these and other questions. This authoritative text, used as a standard reference by numerous survey organizations, teaches the principles of sampling with examples from social sciences, public opinion research, public health, business, agriculture, and ecology. Readers should be familiar with concepts from an introductory statistics class including probability and linear regression; optional sections contain statistical theory for readers familiar with mathematical statistics. The third edition, thoroughly revised to incorporate recent research and applications, includes a new chapter on nonprobability samples—when to use them and how to evaluate their quality. More than 200 new examples and exercises have been added to the already extensive sets in the second edition. SDA’s companion website contains data sets, computer code, and links to two free downloadable supplementary books (also available in paperback) that provide step-by-step guides—with code, annotated output, and helpful tips—for working through the SDA examples. Instructors can use either R or SAS® software. SAS® Software Companion for Sampling: Design and Analysis, Third Edition by Sharon L. Lohr (2022, CRC Press) R Companion for Sampling: Design and Analysis, Third Edition by Yan Lu and Sharon L. Lohr (2022, CRC Press)