Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Propagation In Reaction Diffusion Equations With Fractional Diffusion
Download Propagation In Reaction Diffusion Equations With Fractional Diffusion full books in PDF, epub, and Kindle. Read online Propagation In Reaction Diffusion Equations With Fractional Diffusion ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Beyond Perturbation by : Shijun Liao
Download or read book Beyond Perturbation written by Shijun Liao and published by CRC Press. This book was released on 2003-10-27 with total page 335 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solving nonlinear problems is inherently difficult, and the stronger the nonlinearity, the more intractable solutions become. Analytic approximations often break down as nonlinearity becomes strong, and even perturbation approximations are valid only for problems with weak nonlinearity. This book introduces a powerful new analytic method for nonlinear problems-homotopy analysis-that remains valid even with strong nonlinearity. In Part I, the author starts with a very simple example, then presents the basic ideas, detailed procedures, and the advantages (and limitations) of homotopy analysis. Part II illustrates the application of homotopy analysis to many interesting nonlinear problems. These range from simple bifurcations of a nonlinear boundary-value problem to the Thomas-Fermi atom model, Volterra's population model, Von Karman swirling viscous flow, and nonlinear progressive waves in deep water. Although the homotopy analysis method has been verified in a number of prestigious journals, it has yet to be fully detailed in book form. Written by a pioneer in its development, Beyond Pertubation: Introduction to the Homotopy Analysis Method is your first opportunity to explore the details of this valuable new approach, add it to your analytic toolbox, and perhaps make contributions to some of the questions that remain open.
Book Synopsis The Mathematics of Diffusion by : John Crank
Download or read book The Mathematics of Diffusion written by John Crank and published by Oxford University Press. This book was released on 1979 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: Though it incorporates much new material, this new edition preserves the general character of the book in providing a collection of solutions of the equations of diffusion and describing how these solutions may be obtained.
Download or read book H-Transforms written by Anatoly A. Kilbas and published by CRC Press. This book was released on 2004-03-17 with total page 399 pages. Available in PDF, EPUB and Kindle. Book excerpt: Along with more than 2100 integral equations and their solutions, this handbook outlines exact analytical methods for solving linear and nonlinear integral equations and provides an evaluation of approximate methods. Each section provides examples that show how methods can be applied to specific equations.
Book Synopsis Fractional Diffusion Equations and Anomalous Diffusion by : Luiz Roberto Evangelista
Download or read book Fractional Diffusion Equations and Anomalous Diffusion written by Luiz Roberto Evangelista and published by Cambridge University Press. This book was released on 2018-01-25 with total page 361 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents a unified treatment of anomalous diffusion problems using fractional calculus in a wide range of applications across scientific and technological disciplines.
Book Synopsis Finite Difference Computing with PDEs by : Hans Petter Langtangen
Download or read book Finite Difference Computing with PDEs written by Hans Petter Langtangen and published by Springer. This book was released on 2017-06-21 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is open access under a CC BY 4.0 license. This easy-to-read book introduces the basics of solving partial differential equations by means of finite difference methods. Unlike many of the traditional academic works on the topic, this book was written for practitioners. Accordingly, it especially addresses: the construction of finite difference schemes, formulation and implementation of algorithms, verification of implementations, analyses of physical behavior as implied by the numerical solutions, and how to apply the methods and software to solve problems in the fields of physics and biology.
Book Synopsis Tools for PDE by : Michael E. Taylor
Download or read book Tools for PDE written by Michael E. Taylor and published by American Mathematical Soc.. This book was released on 2000 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: Developing three related tools that are useful in the analysis of partial differential equations (PDEs) arising from the classical study of singular integral operators, this text considers pseudodifferential operators, paradifferential operators, and layer potentials.
Book Synopsis Fractional Derivatives with Mittag-Leffler Kernel by : José Francisco Gómez
Download or read book Fractional Derivatives with Mittag-Leffler Kernel written by José Francisco Gómez and published by Springer. This book was released on 2019-02-13 with total page 339 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a timely overview of fractional calculus applications, with a special emphasis on fractional derivatives with Mittag-Leffler kernel. The different contributions, written by applied mathematicians, physicists and engineers, offers a snapshot of recent research in the field, highlighting the current methodological frameworks together with applications in different fields of science and engineering, such as chemistry, mechanics, epidemiology and more. It is intended as a timely guide and source of inspiration for graduate students and researchers in the above-mentioned areas.
Book Synopsis Integral Transforms of Generalized Functions by : Brychkov
Download or read book Integral Transforms of Generalized Functions written by Brychkov and published by CRC Press. This book was released on 1989-04-20 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: English translation (from revised and enlarged versions of the Russian editions of 1977 and 1984) of a reference work which makes available to engineers, physicists and applied mathematicians theoretical and tabular material pertaining to certain extensions of standard integral transform techniques. Diverse transforms are touched upon, but the emphasis (particularly in the tables) is on generalized Fourier and Laplace transforms. Some multi-dimensional results are presented. Expensive, but nicely produced, and redundant with nothing standard to the reference shelves of mathematical libraries. (NW) Annotation copyrighted by Book News, Inc., Portland, OR
Book Synopsis The Fractional Laplacian by : C. Pozrikidis
Download or read book The Fractional Laplacian written by C. Pozrikidis and published by CRC Press. This book was released on 2018-09-03 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fractional Laplacian, also called the Riesz fractional derivative, describes an unusual diffusion process associated with random excursions. The Fractional Laplacian explores applications of the fractional Laplacian in science, engineering, and other areas where long-range interactions and conceptual or physical particle jumps resulting in an irregular diffusive or conductive flux are encountered. Presents the material at a level suitable for a broad audience of scientists and engineers with rudimentary background in ordinary differential equations and integral calculus Clarifies the concept of the fractional Laplacian for functions in one, two, three, or an arbitrary number of dimensions defined over the entire space, satisfying periodicity conditions, or restricted to a finite domain Covers physical and mathematical concepts as well as detailed mathematical derivations Develops a numerical framework for solving differential equations involving the fractional Laplacian and presents specific algorithms accompanied by numerical results in one, two, and three dimensions Discusses viscous flow and physical examples from scientific and engineering disciplines Written by a prolific author well known for his contributions in fluid mechanics, biomechanics, applied mathematics, scientific computing, and computer science, the book emphasizes fundamental ideas and practical numerical computation. It includes original material and novel numerical methods.
Book Synopsis Fractional Equations and Models by : Trifce Sandev
Download or read book Fractional Equations and Models written by Trifce Sandev and published by Springer Nature. This book was released on 2019-11-23 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fractional equations and models play an essential part in the description of anomalous dynamics in complex systems. Recent developments in the modeling of various physical, chemical and biological systems have clearly shown that fractional calculus is not just an exotic mathematical theory, as it might have once seemed. The present book seeks to demonstrate this using various examples of equations and models with fractional and generalized operators. Intended for students and researchers in mathematics, physics, chemistry, biology and engineering, it systematically offers a wealth of useful tools for fractional calculus.
Book Synopsis Fractional Calculus and Fractional Differential Equations by : Varsha Daftardar-Gejji
Download or read book Fractional Calculus and Fractional Differential Equations written by Varsha Daftardar-Gejji and published by Springer. This book was released on 2019-08-10 with total page 187 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a broad overview of the latest developments in fractional calculus and fractional differential equations (FDEs) with an aim to motivate the readers to venture into these areas. It also presents original research describing the fractional operators of variable order, fractional-order delay differential equations, chaos and related phenomena in detail. Selected results on the stability of solutions of nonlinear dynamical systems of the non-commensurate fractional order have also been included. Furthermore, artificial neural network and fractional differential equations are elaborated on; and new transform methods (for example, Sumudu methods) and how they can be employed to solve fractional partial differential equations are discussed. The book covers the latest research on a variety of topics, including: comparison of various numerical methods for solving FDEs, the Adomian decomposition method and its applications to fractional versions of the classical Poisson processes, variable-order fractional operators, fractional variational principles, fractional delay differential equations, fractional-order dynamical systems and stability analysis, inequalities and comparison theorems in FDEs, artificial neural network approximation for fractional operators, and new transform methods for solving partial FDEs. Given its scope and level of detail, the book will be an invaluable asset for researchers working in these areas.
Book Synopsis Fractional-Order Models for Nuclear Reactor Analysis by : Gilberto Espinosa Paredes
Download or read book Fractional-Order Models for Nuclear Reactor Analysis written by Gilberto Espinosa Paredes and published by Woodhead Publishing. This book was released on 2020-11-04 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fractional-Order Models for Nuclear Reactor Analysis presents fractional modeling issues in the context of anomalous diffusion processes in an accessible and practical way. The book emphasizes the importance of non-Fickian diffusion in heterogeneous systems as the core of the nuclear reactor, as well as different variations of diffusion processes in nuclear reactors which are presented to establish the importance of nuclear and thermohydraulic phenomena and the physical side effects of feedback. In addition, the book analyzes core issues in fractional modeling in nuclear reactors surrounding phenomenological description and important analytical sub-diffusive processes in the transport neutron. Users will find the most innovative modeling techniques of nuclear reactors using operator differentials of fractional order and applications in nuclear design and reactor dynamics. Proposed methods are tested with Boltzmann equations and non-linear order models alongside real data from nuclear power plants, making this a valuable resource for nuclear professionals, researchers and graduate students, as well as those working in nuclear research centers with expertise in mathematical modeling, physics and control. Presents and analyzes a new paradigm of nuclear reactor phenomena with fractional modeling Considers principles of fractional calculation, methods of solving differential equations of fractional order, and their applications Includes methodologies of linear and nonlinear analysis, along with design and dynamic analyses
Book Synopsis Fractional Dynamics In Comb-like Structures by : Alexander Iomin
Download or read book Fractional Dynamics In Comb-like Structures written by Alexander Iomin and published by World Scientific. This book was released on 2018-08-28 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: Random walks often provide the underlying mesoscopic mechanism for transport phenomena in physics, chemistry and biology. In particular, anomalous transport in branched structures has attracted considerable attention. Combs are simple caricatures of various types of natural branched structures that belong to the category of loopless graphs. The comb model was introduced to understand anomalous transport in percolation clusters. Comb-like models have been widely adopted to describe kinetic processes in various experimental applications in medical physics and biophysics, chemistry of polymers, semiconductors, and many other interdisciplinary applications.The authors present a random walk description of the transport in specific comb geometries, ranging from simple random walks on comb structures, which provide a geometrical explanation of anomalous diffusion, to more complex types of random walks, such as non-Markovian continuous-time random walks. The simplicity of comb models allows to perform a rigorous analysis and to obtain exact analytical results for various types of random walks and reaction-transport processes.
Book Synopsis The Analysis of Fractional Differential Equations by : Kai Diethelm
Download or read book The Analysis of Fractional Differential Equations written by Kai Diethelm and published by Springer. This book was released on 2010-08-18 with total page 251 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fractional calculus was first developed by pure mathematicians in the middle of the 19th century. Some 100 years later, engineers and physicists have found applications for these concepts in their areas. However there has traditionally been little interaction between these two communities. In particular, typical mathematical works provide extensive findings on aspects with comparatively little significance in applications, and the engineering literature often lacks mathematical detail and precision. This book bridges the gap between the two communities. It concentrates on the class of fractional derivatives most important in applications, the Caputo operators, and provides a self-contained, thorough and mathematically rigorous study of their properties and of the corresponding differential equations. The text is a useful tool for mathematicians and researchers from the applied sciences alike. It can also be used as a basis for teaching graduate courses on fractional differential equations.
Book Synopsis Fractional Calculus and its Applications in Physics by : Dumitru Baleanu
Download or read book Fractional Calculus and its Applications in Physics written by Dumitru Baleanu and published by Frontiers Media SA. This book was released on 2019-11-15 with total page 93 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Partial Differential Equations in Action by : Sandro Salsa
Download or read book Partial Differential Equations in Action written by Sandro Salsa and published by Springer. This book was released on 2015-04-24 with total page 714 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is intended as an advanced undergraduate or first-year graduate course for students from various disciplines, including applied mathematics, physics and engineering. It has evolved from courses offered on partial differential equations (PDEs) over the last several years at the Politecnico di Milano. These courses had a twofold purpose: on the one hand, to teach students to appreciate the interplay between theory and modeling in problems arising in the applied sciences, and on the other to provide them with a solid theoretical background in numerical methods, such as finite elements. Accordingly, this textbook is divided into two parts. The first part, chapters 2 to 5, is more elementary in nature and focuses on developing and studying basic problems from the macro-areas of diffusion, propagation and transport, waves and vibrations. In turn the second part, chapters 6 to 11, concentrates on the development of Hilbert spaces methods for the variational formulation and the analysis of (mainly) linear boundary and initial-boundary value problems.
Book Synopsis Nonlocal Diffusion Problems by : Fuensanta Andreu-Vaillo
Download or read book Nonlocal Diffusion Problems written by Fuensanta Andreu-Vaillo and published by American Mathematical Soc.. This book was released on 2010 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonlocal diffusion problems arise in a wide variety of applications, including biology, image processing, particle systems, coagulation models, and mathematical finance. These types of problems are also of great interest for their purely mathematical content. This book presents recent results on nonlocal evolution equations with different boundary conditions, starting with the linear theory and moving to nonlinear cases, including two nonlocal models for the evolution of sandpiles. Both existence and uniqueness of solutions are considered, as well as their asymptotic behaviour. Moreover, the authors present results concerning limits of solutions of the nonlocal equations as a rescaling parameter tends to zero. With these limit procedures the most frequently used diffusion models are recovered: the heat equation, the $p$-Laplacian evolution equation, the porous media equation, the total variation flow, a convection-diffusion equation and the local models for the evolution of sandpiles due to Aronsson-Evans-Wu and Prigozhin. Readers are assumed to be familiar with the basic concepts and techniques of functional analysis and partial differential equations. The text is otherwise self-contained, with the exposition emphasizing an intuitive understanding and results given with full proofs. It is suitable for graduate students or researchers. The authors cover a subject that has received a great deal of attention in recent years. The book is intended as a reference tool for a general audience in analysis and PDEs, including mathematicians, engineers, physicists, biologists, and others interested in nonlocal diffusion problems.