The Real Projective Plane

Download The Real Projective Plane PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461227348
Total Pages : 236 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis The Real Projective Plane by : H.S.M. Coxeter

Download or read book The Real Projective Plane written by H.S.M. Coxeter and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: Along with many small improvements, this revised edition contains van Yzeren's new proof of Pascal's theorem (§1.7) and, in Chapter 2, an improved treatment of order and sense. The Sylvester-Gallai theorem, instead of being introduced as a curiosity, is now used as an essential step in the theory of harmonic separation (§3.34). This makes the logi cal development self-contained: the footnotes involving the References (pp. 214-216) are for comparison with earlier treatments, and to give credit where it is due, not to fill gaps in the argument. H.S.M.C. November 1992 v Preface to the Second Edition Why should one study the real plane? To this question, put by those who advocate the complex plane, or geometry over a general field, I would reply that the real plane is an easy first step. Most of the prop erties are closely analogous, and the real field has the advantage of intuitive accessibility. Moreover, real geometry is exactly what is needed for the projective approach to non· Euclidean geometry. Instead of introducing the affine and Euclidean metrics as in Chapters 8 and 9, we could just as well take the locus of 'points at infinity' to be a conic, or replace the absolute involution by an absolute polarity.

Introduction to Projective Geometry

Download Introduction to Projective Geometry PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 0486141705
Total Pages : 578 pages
Book Rating : 4.4/5 (861 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Projective Geometry by : C. R. Wylie

Download or read book Introduction to Projective Geometry written by C. R. Wylie and published by Courier Corporation. This book was released on 2011-09-12 with total page 578 pages. Available in PDF, EPUB and Kindle. Book excerpt: This lucid introductory text offers both an analytic and an axiomatic approach to plane projective geometry. The analytic treatment builds and expands upon students' familiarity with elementary plane analytic geometry and provides a well-motivated approach to projective geometry. Subsequent chapters explore Euclidean and non-Euclidean geometry as specializations of the projective plane, revealing the existence of an infinite number of geometries, each Euclidean in nature but characterized by a different set of distance- and angle-measurement formulas. Outstanding pedagogical features include worked-through examples, introductions and summaries for each topic, and numerous theorems, proofs, and exercises that reinforce each chapter's precepts. Two helpful indexes conclude the text, along with answers to all odd-numbered exercises. In addition to its value to undergraduate students of mathematics, computer science, and secondary mathematics education, this volume provides an excellent reference for computer science professionals.

Projective Geometry

Download Projective Geometry PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9780387406237
Total Pages : 180 pages
Book Rating : 4.4/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Projective Geometry by : H.S.M. Coxeter

Download or read book Projective Geometry written by H.S.M. Coxeter and published by Springer Science & Business Media. This book was released on 2003-10-09 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: In Euclidean geometry, constructions are made with ruler and compass. Projective geometry is simpler: its constructions require only a ruler. In projective geometry one never measures anything, instead, one relates one set of points to another by a projectivity. The first two chapters of this book introduce the important concepts of the subject and provide the logical foundations. The third and fourth chapters introduce the famous theorems of Desargues and Pappus. Chapters 5 and 6 make use of projectivities on a line and plane, respectively. The next three chapters develop a self-contained account of von Staudt's approach to the theory of conics. The modern approach used in that development is exploited in Chapter 10, which deals with the simplest finite geometry that is rich enough to illustrate all the theorems nontrivially. The concluding chapters show the connections among projective, Euclidean, and analytic geometry.

Perspectives on Projective Geometry

Download Perspectives on Projective Geometry PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642172865
Total Pages : 573 pages
Book Rating : 4.6/5 (421 download)

DOWNLOAD NOW!


Book Synopsis Perspectives on Projective Geometry by : Jürgen Richter-Gebert

Download or read book Perspectives on Projective Geometry written by Jürgen Richter-Gebert and published by Springer Science & Business Media. This book was released on 2011-02-04 with total page 573 pages. Available in PDF, EPUB and Kindle. Book excerpt: Projective geometry is one of the most fundamental and at the same time most beautiful branches of geometry. It can be considered the common foundation of many other geometric disciplines like Euclidean geometry, hyperbolic and elliptic geometry or even relativistic space-time geometry. This book offers a comprehensive introduction to this fascinating field and its applications. In particular, it explains how metric concepts may be best understood in projective terms. One of the major themes that appears throughout this book is the beauty of the interplay between geometry, algebra and combinatorics. This book can especially be used as a guide that explains how geometric objects and operations may be most elegantly expressed in algebraic terms, making it a valuable resource for mathematicians, as well as for computer scientists and physicists. The book is based on the author’s experience in implementing geometric software and includes hundreds of high-quality illustrations.

Projective Geometry

Download Projective Geometry PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319428241
Total Pages : 275 pages
Book Rating : 4.3/5 (194 download)

DOWNLOAD NOW!


Book Synopsis Projective Geometry by : Elisabetta Fortuna

Download or read book Projective Geometry written by Elisabetta Fortuna and published by Springer. This book was released on 2016-12-17 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book starts with a concise but rigorous overview of the basic notions of projective geometry, using straightforward and modern language. The goal is not only to establish the notation and terminology used, but also to offer the reader a quick survey of the subject matter. In the second part, the book presents more than 200 solved problems, for many of which several alternative solutions are provided. The level of difficulty of the exercises varies considerably: they range from computations to harder problems of a more theoretical nature, up to some actual complements of the theory. The structure of the text allows the reader to use the solutions of the exercises both to master the basic notions and techniques and to further their knowledge of the subject, thus learning some classical results not covered in the first part of the book. The book addresses the needs of undergraduate and graduate students in the theoretical and applied sciences, and will especially benefit those readers with a solid grasp of elementary Linear Algebra.

Projective Geometry

Download Projective Geometry PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 0486154890
Total Pages : 148 pages
Book Rating : 4.4/5 (861 download)

DOWNLOAD NOW!


Book Synopsis Projective Geometry by : T. Ewan Faulkner

Download or read book Projective Geometry written by T. Ewan Faulkner and published by Courier Corporation. This book was released on 2013-02-20 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: Highlighted by numerous examples, this book explores methods of the projective geometry of the plane. Examines the conic, the general equation of the 2nd degree, and the relationship between Euclidean and projective geometry. 1960 edition.

Projective Geometry

Download Projective Geometry PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521483643
Total Pages : 272 pages
Book Rating : 4.4/5 (836 download)

DOWNLOAD NOW!


Book Synopsis Projective Geometry by : Albrecht Beutelspacher

Download or read book Projective Geometry written by Albrecht Beutelspacher and published by Cambridge University Press. This book was released on 1998-01-29 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: Projective geometry is not only a jewel of mathematics, but has also many applications in modern information and communication science. This book presents the foundations of classical projective and affine geometry as well as its important applications in coding theory and cryptography. It also could serve as a first acquaintance with diagram geometry. Written in clear and contemporary language with an entertaining style and around 200 exercises, examples and hints, this book is ideally suited to be used as a textbook for study in the classroom or on its own.

An Introduction to Finite Projective Planes

Download An Introduction to Finite Projective Planes PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 0486789942
Total Pages : 116 pages
Book Rating : 4.4/5 (867 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Finite Projective Planes by : Abraham Adrian Albert

Download or read book An Introduction to Finite Projective Planes written by Abraham Adrian Albert and published by Courier Corporation. This book was released on 2015-02-18 with total page 116 pages. Available in PDF, EPUB and Kindle. Book excerpt: Text for both beginning and advanced undergraduate and graduate students covers finite planes, field planes, coordinates in an arbitrary plane, central collineations and the little Desargues' property, the fundamental theorem, and non-Desarguesian planes. 1968 edition.

Projective Geometry

Download Projective Geometry PDF Online Free

Author :
Publisher : OUP Oxford
ISBN 13 : 0191538361
Total Pages : 212 pages
Book Rating : 4.1/5 (915 download)

DOWNLOAD NOW!


Book Synopsis Projective Geometry by : Rey Casse

Download or read book Projective Geometry written by Rey Casse and published by OUP Oxford. This book was released on 2006-08-03 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: This lucid and accessible text provides an introductory guide to projective geometry, an area of mathematics concerned with the properties and invariants of geometric figures under projection. Including numerous worked examples and exercises throughout, the book covers axiomatic geometry, field planes and PG(r, F), coordinatising a projective plane, non-Desarguesian planes, conics and quadrics in PG(3, F). Assuming familiarity with linear algebra, elementary group theory, partial differentiation and finite fields, as well as some elementary coordinate geometry, this text is ideal for 3rd and 4th year mathematics undergraduates.

Modern Projective Geometry

Download Modern Projective Geometry PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9401595909
Total Pages : 370 pages
Book Rating : 4.4/5 (15 download)

DOWNLOAD NOW!


Book Synopsis Modern Projective Geometry by : Claude-Alain Faure

Download or read book Modern Projective Geometry written by Claude-Alain Faure and published by Springer Science & Business Media. This book was released on 2013-04-18 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph develops projective geometries and provides a systematic treatment of morphisms. It introduces a new fundamental theorem and its applications describing morphisms of projective geometries in homogeneous coordinates by semilinear maps. Other topics treated include three equivalent definitions of projective geometries and their correspondence with certain lattices; quotients of projective geometries and isomorphism theorems; and recent results in dimension theory.

Analytic Projective Geometry

Download Analytic Projective Geometry PDF Online Free

Author :
Publisher : Susaeta
ISBN 13 : 9783037191385
Total Pages : 640 pages
Book Rating : 4.1/5 (913 download)

DOWNLOAD NOW!


Book Synopsis Analytic Projective Geometry by : Eduardo Casas-Alvero

Download or read book Analytic Projective Geometry written by Eduardo Casas-Alvero and published by Susaeta. This book was released on 2014 with total page 640 pages. Available in PDF, EPUB and Kindle. Book excerpt: Projective geometry is concerned with the properties of figures that are invariant by projecting and taking sections. It is considered one of the most beautiful parts of geometry and plays a central role because its specializations cover the whole of the affine, Euclidean and non-Euclidean geometries. The natural extension of projective geometry is projective algebraic geometry, a rich and active field of research. The results and techniques of projective geometry are intensively used in computer vision. This book contains a comprehensive presentation of projective geometry, over the real and complex number fields, and its applications to affine and Euclidean geometries. It covers central topics such as linear varieties, cross ratio, duality, projective transformations, quadrics and their classifications--projective, affine and metric--as well as the more advanced and less usual spaces of quadrics, rational normal curves, line complexes and the classifications of collineations, pencils of quadrics and correlations. Two appendices are devoted to the projective foundations of perspective and to the projective models of plane non-Euclidean geometries. The book uses modern language, is based on linear algebra, and provides complete proofs. Exercises are proposed at the end of each chapter; many of them are beautiful classical results. The material in this book is suitable for courses on projective geometry for undergraduate students, with a working knowledge of a standard first course on linear algebra. The text is a valuable guide to graduate students and researchers working in areas using or related to projective geometry, such as algebraic geometry and computer vision, and to anyone looking for an advanced view of geometry as a whole.

Lectures in Projective Geometry

Download Lectures in Projective Geometry PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 0486154734
Total Pages : 244 pages
Book Rating : 4.4/5 (861 download)

DOWNLOAD NOW!


Book Synopsis Lectures in Projective Geometry by : A. Seidenberg

Download or read book Lectures in Projective Geometry written by A. Seidenberg and published by Courier Corporation. This book was released on 2012-06-14 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: An ideal text for undergraduate courses, this volume takes an axiomatic approach that covers relations between the basic theorems, conics, coordinate systems and linear transformations, quadric surfaces, and the Jordan canonical form. 1962 edition.

Compact Projective Planes

Download Compact Projective Planes PDF Online Free

Author :
Publisher : Walter de Gruyter
ISBN 13 : 3110876833
Total Pages : 705 pages
Book Rating : 4.1/5 (18 download)

DOWNLOAD NOW!


Book Synopsis Compact Projective Planes by : Helmut Salzmann

Download or read book Compact Projective Planes written by Helmut Salzmann and published by Walter de Gruyter. This book was released on 2011-06-24 with total page 705 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of the series is to present new and important developments in pure and applied mathematics. Well established in the community over two decades, it offers a large library of mathematics including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers wishing to thoroughly study the topic. Editorial Board Lev Birbrair, Universidade Federal do Ceará, Fortaleza, Brasil Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany Katrin Wendland, University of Freiburg, Germany Honorary Editor Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Titles in planning include Yuri A. Bahturin, Identical Relations in Lie Algebras (2019) Yakov G. Berkovich and Z. Janko, Groups of Prime Power Order, Volume 6 (2019) Yakov G. Berkovich, Lev G. Kazarin, and Emmanuel M. Zhmud', Characters of Finite Groups, Volume 2 (2019) Jorge Herbert Soares de Lira, Variational Problems for Hypersurfaces in Riemannian Manifolds (2019) Volker Mayer, Mariusz Urbański, and Anna Zdunik, Random and Conformal Dynamical Systems (2021) Ioannis Diamantis, Boštjan Gabrovšek, Sofia Lambropoulou, and Maciej Mroczkowski, Knot Theory of Lens Spaces (2021)

Projective Geometry

Download Projective Geometry PDF Online Free

Author :
Publisher : Rudolf Steiner Press
ISBN 13 : 185584379X
Total Pages : 294 pages
Book Rating : 4.8/5 (558 download)

DOWNLOAD NOW!


Book Synopsis Projective Geometry by : Olive Whicher

Download or read book Projective Geometry written by Olive Whicher and published by Rudolf Steiner Press. This book was released on 2013 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: Whicher explores the concepts of polarity and movement in modern projective geometry as a discipline of thought that transcends the limited and rigid space and forms of Euclid, and the corresponding material forces conceived in classical mechanics. Rudolf Steiner underlined the importance of projective geometry as, "a method of training the imaginative faculties of thinking, so that they become an instrument of cognition no less conscious and exact than mathematical reasoning." This seminal approach allows for precise scientific understanding of the concept of creative fields of formative (etheric) forces at work in nature--in plants, animals and in the human being. Olive Whicher's groundbreaking book presents an accessible--non-mathematician's--approach to projective geometry. Profusely illustrated, and written with fire and intuitive genius, this work will be of interest to anyone wishing to cultivate the power of inner visualization in a realm of structural beauty.

Axiomatic Projective Geometry

Download Axiomatic Projective Geometry PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 1483259315
Total Pages : 161 pages
Book Rating : 4.4/5 (832 download)

DOWNLOAD NOW!


Book Synopsis Axiomatic Projective Geometry by : A. Heyting

Download or read book Axiomatic Projective Geometry written by A. Heyting and published by Elsevier. This book was released on 2014-05-12 with total page 161 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bibliotheca Mathematica: A Series of Monographs on Pure and Applied Mathematics, Volume V: Axiomatic Projective Geometry, Second Edition focuses on the principles, operations, and theorems in axiomatic projective geometry, including set theory, incidence propositions, collineations, axioms, and coordinates. The publication first elaborates on the axiomatic method, notions from set theory and algebra, analytic projective geometry, and incidence propositions and coordinates in the plane. Discussions focus on ternary fields attached to a given projective plane, homogeneous coordinates, ternary field and axiom system, projectivities between lines, Desargues' proposition, and collineations. The book takes a look at incidence propositions and coordinates in space. Topics include coordinates of a point, equation of a plane, geometry over a given division ring, trivial axioms and propositions, sixteen points proposition, and homogeneous coordinates. The text examines the fundamental proposition of projective geometry and order, including cyclic order of the projective line, order and coordinates, geometry over an ordered ternary field, cyclically ordered sets, and fundamental proposition. The manuscript is a valuable source of data for mathematicians and researchers interested in axiomatic projective geometry.

Unitals in Projective Planes

Download Unitals in Projective Planes PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 038776366X
Total Pages : 197 pages
Book Rating : 4.3/5 (877 download)

DOWNLOAD NOW!


Book Synopsis Unitals in Projective Planes by : Susan Barwick

Download or read book Unitals in Projective Planes written by Susan Barwick and published by Springer Science & Business Media. This book was released on 2009-04-03 with total page 197 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a monograph on unitals embedded in ?nite projective planes. Unitals are an interesting structure found in square order projective planes, and numerous research articles constructing and discussing these structures have appeared in print. More importantly, there still are many open pr- lems, and this remains a fruitful area for Ph.D. dissertations. Unitals play an important role in ?nite geometry as well as in related areas of mathematics. For example, unitals play a parallel role to Baer s- planes when considering extreme values for the size of a blocking set in a square order projective plane (see Section 2.3). Moreover, unitals meet the upper bound for the number of absolute points of any polarity in a square order projective plane (see Section 1.5). From an applications point of view, the linear codes arising from unitals have excellent technical properties (see 2 Section 6.4). The automorphism group of the classical unitalH =H(2,q ) is 2-transitive on the points ofH, and so unitals are of interest in group theory. In the ?eld of algebraic geometry over ?nite ?elds,H is a maximal curve that contains the largest number of F -rational points with respect to its genus, 2 q as established by the Hasse-Weil bound.

Lectures on Curves, Surfaces and Projective Varieties

Download Lectures on Curves, Surfaces and Projective Varieties PDF Online Free

Author :
Publisher : European Mathematical Society
ISBN 13 : 9783037190647
Total Pages : 512 pages
Book Rating : 4.1/5 (96 download)

DOWNLOAD NOW!


Book Synopsis Lectures on Curves, Surfaces and Projective Varieties by : Mauro Beltrametti

Download or read book Lectures on Curves, Surfaces and Projective Varieties written by Mauro Beltrametti and published by European Mathematical Society. This book was released on 2009 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a wide-ranging introduction to algebraic geometry along classical lines. It consists of lectures on topics in classical algebraic geometry, including the basic properties of projective algebraic varieties, linear systems of hypersurfaces, algebraic curves (with special emphasis on rational curves), linear series on algebraic curves, Cremona transformations, rational surfaces, and notable examples of special varieties like the Segre, Grassmann, and Veronese varieties. An integral part and special feature of the presentation is the inclusion of many exercises, not easy to find in the literature and almost all with complete solutions. The text is aimed at students in the last two years of an undergraduate program in mathematics. It contains some rather advanced topics suitable for specialized courses at the advanced undergraduate or beginning graduate level, as well as interesting topics for a senior thesis. The prerequisites have been deliberately limited to basic elements of projective geometry and abstract algebra. Thus, for example, some knowledge of the geometry of subspaces and properties of fields is assumed. The book will be welcomed by teachers and students of algebraic geometry who are seeking a clear and panoramic path leading from the basic facts about linear subspaces, conics and quadrics to a systematic discussion of classical algebraic varieties and the tools needed to study them. The text provides a solid foundation for approaching more advanced and abstract literature.