Deep Learning for Medical Image Analysis

Download Deep Learning for Medical Image Analysis PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0323858880
Total Pages : 544 pages
Book Rating : 4.3/5 (238 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning for Medical Image Analysis by : S. Kevin Zhou

Download or read book Deep Learning for Medical Image Analysis written by S. Kevin Zhou and published by Academic Press. This book was released on 2023-11-23 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep Learning for Medical Image Analysis, Second Edition is a great learning resource for academic and industry researchers and graduate students taking courses on machine learning and deep learning for computer vision and medical image computing and analysis. Deep learning provides exciting solutions for medical image analysis problems and is a key method for future applications. This book gives a clear understanding of the principles and methods of neural network and deep learning concepts, showing how the algorithms that integrate deep learning as a core component are applied to medical image detection, segmentation, registration, and computer-aided analysis.· Covers common research problems in medical image analysis and their challenges · Describes the latest deep learning methods and the theories behind approaches for medical image analysis · Teaches how algorithms are applied to a broad range of application areas including cardiac, neural and functional, colonoscopy, OCTA applications and model assessment · Includes a Foreword written by Nicholas Ayache

Computer Vision -- ECCV 2014

Download Computer Vision -- ECCV 2014 PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319105930
Total Pages : 871 pages
Book Rating : 4.3/5 (191 download)

DOWNLOAD NOW!


Book Synopsis Computer Vision -- ECCV 2014 by : David Fleet

Download or read book Computer Vision -- ECCV 2014 written by David Fleet and published by Springer. This book was released on 2014-08-14 with total page 871 pages. Available in PDF, EPUB and Kindle. Book excerpt: The seven-volume set comprising LNCS volumes 8689-8695 constitutes the refereed proceedings of the 13th European Conference on Computer Vision, ECCV 2014, held in Zurich, Switzerland, in September 2014. The 363 revised papers presented were carefully reviewed and selected from 1444 submissions. The papers are organized in topical sections on tracking and activity recognition; recognition; learning and inference; structure from motion and feature matching; computational photography and low-level vision; vision; segmentation and saliency; context and 3D scenes; motion and 3D scene analysis; and poster sessions.

Deep Learning in Medical Image Analysis

Download Deep Learning in Medical Image Analysis PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030331288
Total Pages : 184 pages
Book Rating : 4.0/5 (33 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning in Medical Image Analysis by : Gobert Lee

Download or read book Deep Learning in Medical Image Analysis written by Gobert Lee and published by Springer Nature. This book was released on 2020-02-06 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents cutting-edge research and applications of deep learning in a broad range of medical imaging scenarios, such as computer-aided diagnosis, image segmentation, tissue recognition and classification, and other areas of medical and healthcare problems. Each of its chapters covers a topic in depth, ranging from medical image synthesis and techniques for muskuloskeletal analysis to diagnostic tools for breast lesions on digital mammograms and glaucoma on retinal fundus images. It also provides an overview of deep learning in medical image analysis and highlights issues and challenges encountered by researchers and clinicians, surveying and discussing practical approaches in general and in the context of specific problems. Academics, clinical and industry researchers, as well as young researchers and graduate students in medical imaging, computer-aided-diagnosis, biomedical engineering and computer vision will find this book a great reference and very useful learning resource.

Advanced Deep Learning Strategies for the Analysis of Remote Sensing Images

Download Advanced Deep Learning Strategies for the Analysis of Remote Sensing Images PDF Online Free

Author :
Publisher : MDPI
ISBN 13 : 3036509860
Total Pages : 438 pages
Book Rating : 4.0/5 (365 download)

DOWNLOAD NOW!


Book Synopsis Advanced Deep Learning Strategies for the Analysis of Remote Sensing Images by : Yakoub Bazi

Download or read book Advanced Deep Learning Strategies for the Analysis of Remote Sensing Images written by Yakoub Bazi and published by MDPI. This book was released on 2021-06-15 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: The rapid growth of the world population has resulted in an exponential expansion of both urban and agricultural areas. Identifying and managing such earthly changes in an automatic way poses a worth-addressing challenge, in which remote sensing technology can have a fundamental role to answer—at least partially—such demands. The recent advent of cutting-edge processing facilities has fostered the adoption of deep learning architectures owing to their generalization capabilities. In this respect, it seems evident that the pace of deep learning in the remote sensing domain remains somewhat lagging behind that of its computer vision counterpart. This is due to the scarce availability of ground truth information in comparison with other computer vision domains. In this book, we aim at advancing the state of the art in linking deep learning methodologies with remote sensing image processing by collecting 20 contributions from different worldwide scientists and laboratories. The book presents a wide range of methodological advancements in the deep learning field that come with different applications in the remote sensing landscape such as wildfire and postdisaster damage detection, urban forest mapping, vine disease and pavement marking detection, desert road mapping, road and building outline extraction, vehicle and vessel detection, water identification, and text-to-image matching.

Hyperspectral Image Analysis

Download Hyperspectral Image Analysis PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030386171
Total Pages : 464 pages
Book Rating : 4.0/5 (33 download)

DOWNLOAD NOW!


Book Synopsis Hyperspectral Image Analysis by : Saurabh Prasad

Download or read book Hyperspectral Image Analysis written by Saurabh Prasad and published by Springer Nature. This book was released on 2020-04-27 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reviews the state of the art in algorithmic approaches addressing the practical challenges that arise with hyperspectral image analysis tasks, with a focus on emerging trends in machine learning and image processing/understanding. It presents advances in deep learning, multiple instance learning, sparse representation based learning, low-dimensional manifold models, anomalous change detection, target recognition, sensor fusion and super-resolution for robust multispectral and hyperspectral image understanding. It presents research from leading international experts who have made foundational contributions in these areas. The book covers a diverse array of applications of multispectral/hyperspectral imagery in the context of these algorithms, including remote sensing, face recognition and biomedicine. This book would be particularly beneficial to graduate students and researchers who are taking advanced courses in (or are working in) the areas of image analysis, machine learning and remote sensing with multi-channel optical imagery. Researchers and professionals in academia and industry working in areas such as electrical engineering, civil and environmental engineering, geosciences and biomedical image processing, who work with multi-channel optical data will find this book useful.

Real-Time Image and Video Processing

Download Real-Time Image and Video Processing PDF Online Free

Author :
Publisher : Morgan & Claypool Publishers
ISBN 13 : 1598290533
Total Pages : 108 pages
Book Rating : 4.5/5 (982 download)

DOWNLOAD NOW!


Book Synopsis Real-Time Image and Video Processing by : Nasser Kehtarnavaz

Download or read book Real-Time Image and Video Processing written by Nasser Kehtarnavaz and published by Morgan & Claypool Publishers. This book was released on 2006-12-01 with total page 108 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents an overview of the guidelines and strategies for transitioning an image or video processing algorithm from a research environment into a real-time constrained environment. Such guidelines and strategies are scattered in the literature of various disciplines including image processing, computer engineering, and software engineering, and thus have not previously appeared in one place. By bringing these strategies into one place, the book is intended to serve the greater community of researchers, practicing engineers, industrial professionals, who are interested in taking an image or video processing algorithm from a research environment to an actual real-time implementation on a resource constrained hardware platform. These strategies consist of algorithm simplifications, hardware architectures, and software methods. Throughout the book, carefully selected representative examples from the literature are presented to illustrate the discussed concepts. After reading the book, the readers are exposed to a wide variety of techniques and tools, which they can then employ to design a real-time image or video processing system.

Medical Image Analysis

Download Medical Image Analysis PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0128136588
Total Pages : 700 pages
Book Rating : 4.1/5 (281 download)

DOWNLOAD NOW!


Book Synopsis Medical Image Analysis by : Alejandro Frangi

Download or read book Medical Image Analysis written by Alejandro Frangi and published by Academic Press. This book was released on 2023-09-20 with total page 700 pages. Available in PDF, EPUB and Kindle. Book excerpt: Medical Image Analysis presents practical knowledge on medical image computing and analysis as written by top educators and experts. This text is a modern, practical, self-contained reference that conveys a mix of fundamental methodological concepts within different medical domains. Sections cover core representations and properties of digital images and image enhancement techniques, advanced image computing methods (including segmentation, registration, motion and shape analysis), machine learning, how medical image computing (MIC) is used in clinical and medical research, and how to identify alternative strategies and employ software tools to solve typical problems in MIC. - An authoritative presentation of key concepts and methods from experts in the field - Sections clearly explaining key methodological principles within relevant medical applications - Self-contained chapters enable the text to be used on courses with differing structures - A representative selection of modern topics and techniques in medical image computing - Focus on medical image computing as an enabling technology to tackle unmet clinical needs - Presentation of traditional and machine learning approaches to medical image computing

Deep Learning for Coders with fastai and PyTorch

Download Deep Learning for Coders with fastai and PyTorch PDF Online Free

Author :
Publisher : O'Reilly Media
ISBN 13 : 1492045497
Total Pages : 624 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning for Coders with fastai and PyTorch by : Jeremy Howard

Download or read book Deep Learning for Coders with fastai and PyTorch written by Jeremy Howard and published by O'Reilly Media. This book was released on 2020-06-29 with total page 624 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala

Content-Based Image Classification

Download Content-Based Image Classification PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000280470
Total Pages : 197 pages
Book Rating : 4.0/5 (2 download)

DOWNLOAD NOW!


Book Synopsis Content-Based Image Classification by : Rik Das

Download or read book Content-Based Image Classification written by Rik Das and published by CRC Press. This book was released on 2020-12-17 with total page 197 pages. Available in PDF, EPUB and Kindle. Book excerpt: Content-Based Image Classification: Efficient Machine Learning Using Robust Feature Extraction Techniques is a comprehensive guide to research with invaluable image data. Social Science Research Network has revealed that 65% of people are visual learners. Research data provided by Hyerle (2000) has clearly shown 90% of information in the human brain is visual. Thus, it is no wonder that visual information processing in the brain is 60,000 times faster than text-based information (3M Corporation, 2001). Recently, we have witnessed a significant surge in conversing with images due to the popularity of social networking platforms. The other reason for embracing usage of image data is the mass availability of high-resolution cellphone cameras. Wide usage of image data in diversified application areas including medical science, media, sports, remote sensing, and so on, has spurred the need for further research in optimizing archival, maintenance, and retrieval of appropriate image content to leverage data-driven decision-making. This book demonstrates several techniques of image processing to represent image data in a desired format for information identification. It discusses the application of machine learning and deep learning for identifying and categorizing appropriate image data helpful in designing automated decision support systems. The book offers comprehensive coverage of the most essential topics, including: Image feature extraction with novel handcrafted techniques (traditional feature extraction) Image feature extraction with automated techniques (representation learning with CNNs) Significance of fusion-based approaches in enhancing classification accuracy MATLAB® codes for implementing the techniques Use of the Open Access data mining tool WEKA for multiple tasks The book is intended for budding researchers, technocrats, engineering students, and machine learning/deep learning enthusiasts who are willing to start their computer vision journey with content-based image recognition. The readers will get a clear picture of the essentials for transforming the image data into valuable means for insight generation. Readers will learn coding techniques necessary to propose novel mechanisms and disruptive approaches. The WEKA guide provided is beneficial for those uncomfortable coding for machine learning algorithms. The WEKA tool assists the learner in implementing machine learning algorithms with the click of a button. Thus, this book will be a stepping-stone for your machine learning journey. Please visit the author's website for any further guidance at https://www.rikdas.com/

Machine Learning and Deep Learning Techniques for Medical Science

Download Machine Learning and Deep Learning Techniques for Medical Science PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000582523
Total Pages : 413 pages
Book Rating : 4.0/5 (5 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning and Deep Learning Techniques for Medical Science by : K. Gayathri Devi

Download or read book Machine Learning and Deep Learning Techniques for Medical Science written by K. Gayathri Devi and published by CRC Press. This book was released on 2022-05-11 with total page 413 pages. Available in PDF, EPUB and Kindle. Book excerpt: The application of machine learning is growing exponentially into every branch of business and science, including medical science. This book presents the integration of machine learning (ML) and deep learning (DL) algorithms that can be applied in the healthcare sector to reduce the time required by doctors, radiologists, and other medical professionals for analyzing, predicting, and diagnosing the conditions with accurate results. The book offers important key aspects in the development and implementation of ML and DL approaches toward developing prediction tools and models and improving medical diagnosis. The contributors explore the recent trends, innovations, challenges, and solutions, as well as case studies of the applications of ML and DL in intelligent system-based disease diagnosis. The chapters also highlight the basics and the need for applying mathematical aspects with reference to the development of new medical models. Authors also explore ML and DL in relation to artificial intelligence (AI) prediction tools, the discovery of drugs, neuroscience, diagnosis in multiple imaging modalities, and pattern recognition approaches to functional magnetic resonance imaging images. This book is for students and researchers of computer science and engineering, electronics and communication engineering, and information technology; for biomedical engineering researchers, academicians, and educators; and for students and professionals in other areas of the healthcare sector. Presents key aspects in the development and the implementation of ML and DL approaches toward developing prediction tools, models, and improving medical diagnosis Discusses the recent trends, innovations, challenges, solutions, and applications of intelligent system-based disease diagnosis Examines DL theories, models, and tools to enhance health information systems Explores ML and DL in relation to AI prediction tools, discovery of drugs, neuroscience, and diagnosis in multiple imaging modalities Dr. K. Gayathri Devi is a Professor at the Department of Electronics and Communication Engineering, Dr. N.G.P Institute of Technology, Tamil Nadu, India. Dr. Kishore Balasubramanian is an Assistant Professor (Senior Scale) at the Department of EEE at Dr. Mahalingam College of Engineering & Technology, Tamil Nadu, India. Dr. Le Anh Ngoc is a Director of Swinburne Innovation Space and Professor in Swinburne University of Technology (Vietnam).

Enhancing Steganography Through Deep Learning Approaches

Download Enhancing Steganography Through Deep Learning Approaches PDF Online Free

Author :
Publisher : IGI Global
ISBN 13 :
Total Pages : 436 pages
Book Rating : 4.3/5 (693 download)

DOWNLOAD NOW!


Book Synopsis Enhancing Steganography Through Deep Learning Approaches by : Kumar, Vijay

Download or read book Enhancing Steganography Through Deep Learning Approaches written by Kumar, Vijay and published by IGI Global. This book was released on 2024-11-04 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: In an era defined by digital connectivity, securing sensitive information against cyber threats is a pressing concern. As digital transmission systems advance, so do the methods of intrusion and data theft. Traditional security measures often need to catch up in safeguarding against sophisticated cyber-attacks. This book presents a timely solution by integrating steganography, the ancient art of concealing information, with cutting-edge deep learning techniques. By blending these two technologies, the book offers a comprehensive approach to fortifying the security of digital communication channels. Enhancing Steganography Through Deep Learning Approaches addresses critical issues in national information security, business and personal privacy, property security, counterterrorism, and internet security. It thoroughly explores steganography's application in bolstering security across various domains. Readers will gain insights into the fusion of deep learning and steganography for advanced encryption and data protection, along with innovative steganographic techniques for securing physical and intellectual property. The book also delves into real-world examples of thwarting malicious activities using deep learning-enhanced steganography. This book is tailored for academics and researchers in Artificial Intelligence, postgraduate students seeking in-depth knowledge in AI and deep learning, smart computing practitioners, data analysis professionals, and security sector professionals.

Super-Resolution for Remote Sensing Applications Using Deep Learning Techniques

Download Super-Resolution for Remote Sensing Applications Using Deep Learning Techniques PDF Online Free

Author :
Publisher : Cambridge Scholars Publishing
ISBN 13 : 1527591352
Total Pages : 226 pages
Book Rating : 4.5/5 (275 download)

DOWNLOAD NOW!


Book Synopsis Super-Resolution for Remote Sensing Applications Using Deep Learning Techniques by : G. Rohith

Download or read book Super-Resolution for Remote Sensing Applications Using Deep Learning Techniques written by G. Rohith and published by Cambridge Scholars Publishing. This book was released on 2022-12-14 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: Satellite image processing is crucial in detecting vegetation, clouds, and other atmospheric applications. Due to sensor limitations and pre-processing, remotely sensed satellite images may have interpretability concerns as to specific portions of the image, making it hard to recognise patterns or objects and posing the risk of losing minute details in the image. Existing imaging processors and optical components are expensive to counterfeit, have interpretability issues, and are not necessarily viable in real applications. This book exploits the usage of deep learning (DL) components in feature extraction to boost the minute details of images and their classification implications to tackle such problems. It shows the importance of super-resolution in improving the spatial details of images and aiding digital aerial photography in pan-sharpening, detecting signatures correctly, and making precise decisions with decision-making tools.

Deep Learning: Theory, Architectures and Applications in Speech, Image and Language Processing

Download Deep Learning: Theory, Architectures and Applications in Speech, Image and Language Processing PDF Online Free

Author :
Publisher : Bentham Science Publishers
ISBN 13 : 9815079220
Total Pages : 270 pages
Book Rating : 4.8/5 (15 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning: Theory, Architectures and Applications in Speech, Image and Language Processing by : Gyanendra Verma

Download or read book Deep Learning: Theory, Architectures and Applications in Speech, Image and Language Processing written by Gyanendra Verma and published by Bentham Science Publishers. This book was released on 2023-08-21 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a detailed reference guide on deep learning and its applications. It aims to provide a basic understanding of deep learning and its different architectures that are applied to process images, speech, and natural language. It explains basic concepts and many modern use cases through fifteen chapters contributed by computer science academics and researchers. By the end of the book, the reader will become familiar with different deep learning approaches and models, and understand how to implement various deep learning algorithms using multiple frameworks and libraries. This book is divided into three parts. The first part explains the basic operating understanding, history, evolution, and challenges associated with deep learning. The basic concepts of mathematics and the hardware requirements for deep learning implementation, and some of its popular frameworks for medical applications are also covered. The second part is dedicated to sentiment analysis using deep learning and machine learning techniques. This book section covers the experimentation and application of deep learning techniques and architectures in real-world applications. It details the salient approaches, issues, and challenges in building ethically aligned machines. An approach inspired by traditional Eastern thought and wisdom is also presented. The final part covers artificial intelligence approaches used to explain the machine learning models that enhance transparency for the benefit of users. A review and detailed description of the use of knowledge graphs in generating explanations for black-box recommender systems and a review of ethical system design and a model for sustainable education is included in this section. An additional chapter demonstrates how a semi-supervised machine learning technique can be used for cryptocurrency portfolio management. The book is a timely reference for academicians, professionals, researchers and students at engineering and medical institutions working on artificial intelligence applications.

Fundamentals and Methods of Machine and Deep Learning

Download Fundamentals and Methods of Machine and Deep Learning PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119821886
Total Pages : 480 pages
Book Rating : 4.1/5 (198 download)

DOWNLOAD NOW!


Book Synopsis Fundamentals and Methods of Machine and Deep Learning by : Pradeep Singh

Download or read book Fundamentals and Methods of Machine and Deep Learning written by Pradeep Singh and published by John Wiley & Sons. This book was released on 2022-02-01 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: FUNDAMENTALS AND METHODS OF MACHINE AND DEEP LEARNING The book provides a practical approach by explaining the concepts of machine learning and deep learning algorithms, evaluation of methodology advances, and algorithm demonstrations with applications. Over the past two decades, the field of machine learning and its subfield deep learning have played a main role in software applications development. Also, in recent research studies, they are regarded as one of the disruptive technologies that will transform our future life, business, and the global economy. The recent explosion of digital data in a wide variety of domains, including science, engineering, Internet of Things, biomedical, healthcare, and many business sectors, has declared the era of big data, which cannot be analysed by classical statistics but by the more modern, robust machine learning and deep learning techniques. Since machine learning learns from data rather than by programming hard-coded decision rules, an attempt is being made to use machine learning to make computers that are able to solve problems like human experts in the field. The goal of this book is to present a??practical approach by explaining the concepts of machine learning and deep learning algorithms with applications. Supervised machine learning algorithms, ensemble machine learning algorithms, feature selection, deep learning techniques, and their applications are discussed. Also included in the eighteen chapters is unique information which provides a clear understanding of concepts by using algorithms and case studies illustrated with applications of machine learning and deep learning in different domains, including disease prediction, software defect prediction, online television analysis, medical image processing, etc. Each of the chapters briefly described below provides both a chosen approach and its implementation. Audience Researchers and engineers in artificial intelligence, computer scientists as well as software developers.

Neural Information Processing

Download Neural Information Processing PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030367088
Total Pages : 790 pages
Book Rating : 4.0/5 (33 download)

DOWNLOAD NOW!


Book Synopsis Neural Information Processing by : Tom Gedeon

Download or read book Neural Information Processing written by Tom Gedeon and published by Springer Nature. This book was released on 2019-12-12 with total page 790 pages. Available in PDF, EPUB and Kindle. Book excerpt: The three-volume set of LNCS 11953, 11954, and 11955 constitutes the proceedings of the 26th International Conference on Neural Information Processing, ICONIP 2019, held in Sydney, Australia, in December 2019. The 173 full papers presented were carefully reviewed and selected from 645 submissions. The papers address the emerging topics of theoretical research, empirical studies, and applications of neural information processing techniques across different domains. The first volume, LNCS 11953, is organized in topical sections on adversarial networks and learning; convolutional neural networks; deep neural networks; feature learning and representation; human centred computing; human centred computing and medicine; hybrid models; and artificial intelligence and cybersecurity.

Computer Vision and Image Processing

Download Computer Vision and Image Processing PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031581741
Total Pages : 638 pages
Book Rating : 4.0/5 (315 download)

DOWNLOAD NOW!


Book Synopsis Computer Vision and Image Processing by : Harkeerat Kaur

Download or read book Computer Vision and Image Processing written by Harkeerat Kaur and published by Springer Nature. This book was released on with total page 638 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Digital Image Processing

Download Digital Image Processing PDF Online Free

Author :
Publisher : RK Publication
ISBN 13 : 8197469776
Total Pages : 301 pages
Book Rating : 4.1/5 (974 download)

DOWNLOAD NOW!


Book Synopsis Digital Image Processing by : Mr. Bandam Narendar

Download or read book Digital Image Processing written by Mr. Bandam Narendar and published by RK Publication. This book was released on 2024-06-21 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt: Digital Image Processing the fundamentals and advanced techniques used to analyze, enhance, and transform digital images. It covers key concepts like image representation, filtering, segmentation, restoration, and compression. This both the theoretical foundations and practical applications of image processing, making it suitable for students and professionals in fields such as computer science, engineering, and applied sciences. With a balance of algorithms, examples, and visual illustrations, it provides readers with a comprehensive understanding of how digital images are processed and utilized in modern technology.