Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Probabilistic Topic Models
Download Probabilistic Topic Models full books in PDF, epub, and Kindle. Read online Probabilistic Topic Models ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Applications of Topic Models by : Jordan Boyd-Graber
Download or read book Applications of Topic Models written by Jordan Boyd-Graber and published by Now Publishers. This book was released on 2017-07-13 with total page 163 pages. Available in PDF, EPUB and Kindle. Book excerpt: Describes recent academic and industrial applications of topic models with the goal of launching a young researcher capable of building their own applications of topic models.
Book Synopsis Modeling Approaches and Algorithms for Advanced Computer Applications by : Abdelmalek Amine
Download or read book Modeling Approaches and Algorithms for Advanced Computer Applications written by Abdelmalek Amine and published by Springer. This book was released on 2013-08-23 with total page 443 pages. Available in PDF, EPUB and Kindle. Book excerpt: "During the last decades Computational Intelligence has emerged and showed its contributions in various broad research communities (computer science, engineering, finance, economic, decision making, etc.). This was done by proposing approaches and algorithms based either on turnkey techniques belonging to the large panoply of solutions offered by computational intelligence such as data mining, genetic algorithms, bio-inspired methods, Bayesian networks, machine learning, fuzzy logic, artificial neural networks, etc. or inspired by computational intelligence techniques to develop new ad-hoc algorithms for the problem under consideration. This volume is a comprehensive collection of extended contributions from the 4th International Conference on Computer Science and Its Applications (CIIA’2013) organized into four main tracks: Track 1: Computational Intelligence, Track 2: Security & Network Technologies, Track 3: Information Technology and Track 4: Computer Systems and Applications. This book presents recent advances in the use and exploitation of computational intelligence in several real world hard problems covering these tracks such as image processing, Arab text processing, sensor and mobile networks, physical design of advanced databases, model matching, etc. that require advanced approaches and algorithms borrowed from computational intelligence for solving them.
Book Synopsis Handbook of Latent Semantic Analysis by : Thomas K. Landauer
Download or read book Handbook of Latent Semantic Analysis written by Thomas K. Landauer and published by Psychology Press. This book was released on 2007-02-15 with total page 570 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook of Latent Semantic Analysis is the authoritative reference for the theory behind Latent Semantic Analysis (LSA), a burgeoning mathematical method used to analyze how words make meaning, with the desired outcome to program machines to understand human commands via natural language rather than strict programming protocols. The first book
Download or read book Text Mining with R written by Julia Silge and published by "O'Reilly Media, Inc.". This book was released on 2017-06-12 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt: Chapter 7. Case Study : Comparing Twitter Archives; Getting the Data and Distribution of Tweets; Word Frequencies; Comparing Word Usage; Changes in Word Use; Favorites and Retweets; Summary; Chapter 8. Case Study : Mining NASA Metadata; How Data Is Organized at NASA; Wrangling and Tidying the Data; Some Initial Simple Exploration; Word Co-ocurrences and Correlations; Networks of Description and Title Words; Networks of Keywords; Calculating tf-idf for the Description Fields; What Is tf-idf for the Description Field Words?; Connecting Description Fields to Keywords; Topic Modeling.
Book Synopsis Uncertainty in Artificial Intelligence by : Laveen N. Kanal
Download or read book Uncertainty in Artificial Intelligence written by Laveen N. Kanal and published by North Holland. This book was released on 1986 with total page 509 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hardbound. How to deal with uncertainty is a subject of much controversy in Artificial Intelligence. This volume brings together a wide range of perspectives on uncertainty, many of the contributors being the principal proponents in the controversy.Some of the notable issues which emerge from these papers revolve around an interval-based calculus of uncertainty, the Dempster-Shafer Theory, and probability as the best numeric model for uncertainty. There remain strong dissenting opinions not only about probability but even about the utility of any numeric method in this context.
Book Synopsis Practical Text Analytics by : Murugan Anandarajan
Download or read book Practical Text Analytics written by Murugan Anandarajan and published by Springer. This book was released on 2018-10-19 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces text analytics as a valuable method for deriving insights from text data. Unlike other text analytics publications, Practical Text Analytics: Maximizing the Value of Text Data makes technical concepts accessible to those without extensive experience in the field. Using text analytics, organizations can derive insights from content such as emails, documents, and social media. Practical Text Analytics is divided into five parts. The first part introduces text analytics, discusses the relationship with content analysis, and provides a general overview of text mining methodology. In the second part, the authors discuss the practice of text analytics, including data preparation and the overall planning process. The third part covers text analytics techniques such as cluster analysis, topic models, and machine learning. In the fourth part of the book, readers learn about techniques used to communicate insights from text analysis, including data storytelling. The final part of Practical Text Analytics offers examples of the application of software programs for text analytics, enabling readers to mine their own text data to uncover information.
Book Synopsis Probabilistic Topic Models by : Di Jiang
Download or read book Probabilistic Topic Models written by Di Jiang and published by Springer Nature. This book was released on 2023-06-08 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces readers to the theoretical foundation and application of topic models. It provides readers with efficient means to learn about the technical principles underlying topic models. More concretely, it covers topics such as fundamental concepts, topic model structures, approximate inference algorithms, and a range of methods used to create high-quality topic models. In addition, this book illustrates the applications of topic models applied in real-world scenarios. Readers will be instructed on the means to select and apply suitable models for specific real-world tasks, providing this book with greater use for the industry. Finally, the book presents a catalog of the most important topic models from the literature over the past decades, which can be referenced and indexed by researchers and engineers in related fields. We hope this book can bridge the gap between academic research and industrial application and help topic models play an increasingly effective role in both academia and industry. This book offers a valuable reference guide for senior undergraduate students, graduate students, and researchers, covering the latest advances in topic models, and for industrial practitioners, sharing state-of-the-art solutions for topic-related applications. The book can also serve as a reference for job seekers preparing for interviews.
Book Synopsis Handbook of Mixed Membership Models and Their Applications by : Edoardo M. Airoldi
Download or read book Handbook of Mixed Membership Models and Their Applications written by Edoardo M. Airoldi and published by CRC Press. This book was released on 2014-11-06 with total page 608 pages. Available in PDF, EPUB and Kindle. Book excerpt: Incorporating more than 20 years of the editors' and contributors' statistical work in mixed membership modeling, this handbook shows how to use these flexible modeling tools to uncover hidden patterns in modern high-dimensional multivariate data. It explores the use of the models in various application settings, including survey data, population genetics, text analysis, image processing and annotation, and molecular biology. Through examples using real data sets, readers will discover how to characterize complex multivariate data in a range of areas.
Book Synopsis Probabilistic Graphical Models by : Daphne Koller
Download or read book Probabilistic Graphical Models written by Daphne Koller and published by MIT Press. This book was released on 2009-07-31 with total page 1270 pages. Available in PDF, EPUB and Kindle. Book excerpt: A general framework for constructing and using probabilistic models of complex systems that would enable a computer to use available information for making decisions. Most tasks require a person or an automated system to reason—to reach conclusions based on available information. The framework of probabilistic graphical models, presented in this book, provides a general approach for this task. The approach is model-based, allowing interpretable models to be constructed and then manipulated by reasoning algorithms. These models can also be learned automatically from data, allowing the approach to be used in cases where manually constructing a model is difficult or even impossible. Because uncertainty is an inescapable aspect of most real-world applications, the book focuses on probabilistic models, which make the uncertainty explicit and provide models that are more faithful to reality. Probabilistic Graphical Models discusses a variety of models, spanning Bayesian networks, undirected Markov networks, discrete and continuous models, and extensions to deal with dynamical systems and relational data. For each class of models, the text describes the three fundamental cornerstones: representation, inference, and learning, presenting both basic concepts and advanced techniques. Finally, the book considers the use of the proposed framework for causal reasoning and decision making under uncertainty. The main text in each chapter provides the detailed technical development of the key ideas. Most chapters also include boxes with additional material: skill boxes, which describe techniques; case study boxes, which discuss empirical cases related to the approach described in the text, including applications in computer vision, robotics, natural language understanding, and computational biology; and concept boxes, which present significant concepts drawn from the material in the chapter. Instructors (and readers) can group chapters in various combinations, from core topics to more technically advanced material, to suit their particular needs.
Book Synopsis Intelligence and Security Informatics by : Sharad Mehrotra
Download or read book Intelligence and Security Informatics written by Sharad Mehrotra and published by Springer. This book was released on 2006-05-10 with total page 793 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the IEEE International Conference on Intelligence and Security Informatics, ISI 2006. Gathers 39 revised full papers, 30 revised short papers, and 56 extended poster abstracts, organized in topical sections including intelligence analysis and knowledge discovery; access control, privacy, and cyber trust; surveillance and emergency response; infrastructure protection and cyber security; terrorism informatics and countermeasures; surveillance, bioterrorism, and emergency response.
Book Synopsis Mining Text Data by : Charu C. Aggarwal
Download or read book Mining Text Data written by Charu C. Aggarwal and published by Springer Science & Business Media. This book was released on 2012-02-03 with total page 527 pages. Available in PDF, EPUB and Kindle. Book excerpt: Text mining applications have experienced tremendous advances because of web 2.0 and social networking applications. Recent advances in hardware and software technology have lead to a number of unique scenarios where text mining algorithms are learned. Mining Text Data introduces an important niche in the text analytics field, and is an edited volume contributed by leading international researchers and practitioners focused on social networks & data mining. This book contains a wide swath in topics across social networks & data mining. Each chapter contains a comprehensive survey including the key research content on the topic, and the future directions of research in the field. There is a special focus on Text Embedded with Heterogeneous and Multimedia Data which makes the mining process much more challenging. A number of methods have been designed such as transfer learning and cross-lingual mining for such cases. Mining Text Data simplifies the content, so that advanced-level students, practitioners and researchers in computer science can benefit from this book. Academic and corporate libraries, as well as ACM, IEEE, and Management Science focused on information security, electronic commerce, databases, data mining, machine learning, and statistics are the primary buyers for this reference book.
Book Synopsis Probabilistic Machine Learning by : Kevin P. Murphy
Download or read book Probabilistic Machine Learning written by Kevin P. Murphy and published by MIT Press. This book was released on 2022-03-01 with total page 858 pages. Available in PDF, EPUB and Kindle. Book excerpt: A detailed and up-to-date introduction to machine learning, presented through the unifying lens of probabilistic modeling and Bayesian decision theory. This book offers a detailed and up-to-date introduction to machine learning (including deep learning) through the unifying lens of probabilistic modeling and Bayesian decision theory. The book covers mathematical background (including linear algebra and optimization), basic supervised learning (including linear and logistic regression and deep neural networks), as well as more advanced topics (including transfer learning and unsupervised learning). End-of-chapter exercises allow students to apply what they have learned, and an appendix covers notation. Probabilistic Machine Learning grew out of the author’s 2012 book, Machine Learning: A Probabilistic Perspective. More than just a simple update, this is a completely new book that reflects the dramatic developments in the field since 2012, most notably deep learning. In addition, the new book is accompanied by online Python code, using libraries such as scikit-learn, JAX, PyTorch, and Tensorflow, which can be used to reproduce nearly all the figures; this code can be run inside a web browser using cloud-based notebooks, and provides a practical complement to the theoretical topics discussed in the book. This introductory text will be followed by a sequel that covers more advanced topics, taking the same probabilistic approach.
Book Synopsis Advances in Machine Learning by : Zhi-Hua Zhou
Download or read book Advances in Machine Learning written by Zhi-Hua Zhou and published by Springer. This book was released on 2009-11-03 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: The First Asian Conference on Machine Learning (ACML 2009) was held at Nanjing, China during November 2–4, 2009.This was the ?rst edition of a series of annual conferences which aim to provide a leading international forum for researchers in machine learning and related ?elds to share their new ideas and research ?ndings. This year we received 113 submissions from 18 countries and regions in Asia, Australasia, Europe and North America. The submissions went through a r- orous double-blind reviewing process. Most submissions received four reviews, a few submissions received ?ve reviews, while only several submissions received three reviews. Each submission was handled by an Area Chair who coordinated discussions among reviewers and made recommendation on the submission. The Program Committee Chairs examined the reviews and meta-reviews to further guarantee the reliability and integrity of the reviewing process. Twenty-nine - pers were selected after this process. To ensure that important revisions required by reviewers were incorporated into the ?nal accepted papers, and to allow submissions which would have - tential after a careful revision, this year we launched a “revision double-check” process. In short, the above-mentioned 29 papers were conditionally accepted, and the authors were requested to incorporate the “important-and-must”re- sionssummarizedbyareachairsbasedonreviewers’comments.Therevised?nal version and the revision list of each conditionally accepted paper was examined by the Area Chair and Program Committee Chairs. Papers that failed to pass the examination were ?nally rejected.
Book Synopsis Authorship Attribution by : Patrick Juola
Download or read book Authorship Attribution written by Patrick Juola and published by Now Publishers Inc. This book was released on 2008 with total page 116 pages. Available in PDF, EPUB and Kindle. Book excerpt: Authorship Attribution surveys the history and present state of the discipline, presenting some comparative results where available. It also provides a theoretical and empirically-tested basis for further work. Many modern techniques are described and evaluated, along with some insights for application for novices and experts alike.
Book Synopsis Advances in Neural Information Processing Systems 17 by : Lawrence K. Saul
Download or read book Advances in Neural Information Processing Systems 17 written by Lawrence K. Saul and published by MIT Press. This book was released on 2005 with total page 1710 pages. Available in PDF, EPUB and Kindle. Book excerpt: Papers presented at NIPS, the flagship meeting on neural computation, held in December 2004 in Vancouver.The annual Neural Information Processing Systems (NIPS) conference is the flagship meeting on neural computation. It draws a diverse group of attendees--physicists, neuroscientists, mathematicians, statisticians, and computer scientists. The presentations are interdisciplinary, with contributions in algorithms, learning theory, cognitive science, neuroscience, brain imaging, vision, speech and signal processing, reinforcement learning and control, emerging technologies, and applications. Only twenty-five percent of the papers submitted are accepted for presentation at NIPS, so the quality is exceptionally high. This volume contains the papers presented at the December, 2004 conference, held in Vancouver.
Book Synopsis Bayesian Nonparametrics by : Nils Lid Hjort
Download or read book Bayesian Nonparametrics written by Nils Lid Hjort and published by Cambridge University Press. This book was released on 2010-04-12 with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian nonparametrics works - theoretically, computationally. The theory provides highly flexible models whose complexity grows appropriately with the amount of data. Computational issues, though challenging, are no longer intractable. All that is needed is an entry point: this intelligent book is the perfect guide to what can seem a forbidding landscape. Tutorial chapters by Ghosal, Lijoi and Prünster, Teh and Jordan, and Dunson advance from theory, to basic models and hierarchical modeling, to applications and implementation, particularly in computer science and biostatistics. These are complemented by companion chapters by the editors and Griffin and Quintana, providing additional models, examining computational issues, identifying future growth areas, and giving links to related topics. This coherent text gives ready access both to underlying principles and to state-of-the-art practice. Specific examples are drawn from information retrieval, NLP, machine vision, computational biology, biostatistics, and bioinformatics.
Book Synopsis Machine Learning and Knowledge Discovery in Databases by : Jos L. Balc Zar
Download or read book Machine Learning and Knowledge Discovery in Databases written by Jos L. Balc Zar and published by . This book was released on 2011-03-13 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: