Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Probabilistic Machine Learning Methods For Automated Radiation Therapy Treatment Planning
Download Probabilistic Machine Learning Methods For Automated Radiation Therapy Treatment Planning full books in PDF, epub, and Kindle. Read online Probabilistic Machine Learning Methods For Automated Radiation Therapy Treatment Planning ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Machine Learning in Radiation Oncology by : Issam El Naqa
Download or read book Machine Learning in Radiation Oncology written by Issam El Naqa and published by Springer. This book was released on 2015-06-19 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a complete overview of the role of machine learning in radiation oncology and medical physics, covering basic theory, methods, and a variety of applications in medical physics and radiotherapy. An introductory section explains machine learning, reviews supervised and unsupervised learning methods, discusses performance evaluation, and summarizes potential applications in radiation oncology. Detailed individual sections are then devoted to the use of machine learning in quality assurance; computer-aided detection, including treatment planning and contouring; image-guided radiotherapy; respiratory motion management; and treatment response modeling and outcome prediction. The book will be invaluable for students and residents in medical physics and radiation oncology and will also appeal to more experienced practitioners and researchers and members of applied machine learning communities.
Book Synopsis Modeling for Prediction of Radiation-Induced Toxicity to Improve Therapeutic Ratio in the Modern Radiation Therapy Era by : Ester Orlandi
Download or read book Modeling for Prediction of Radiation-Induced Toxicity to Improve Therapeutic Ratio in the Modern Radiation Therapy Era written by Ester Orlandi and published by Frontiers Media SA. This book was released on 2021-07-27 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Adaptive Radiation Therapy by : X. Allen Li
Download or read book Adaptive Radiation Therapy written by X. Allen Li and published by CRC Press. This book was released on 2011-01-27 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern medical imaging and radiation therapy technologies are so complex and computer driven that it is difficult for physicians and technologists to know exactly what is happening at the point-of-care. Medical physicists responsible for filling this gap in knowledge must stay abreast of the latest advances at the intersection of medical imaging an
Author :M. Guckenberger Publisher :Karger Medical and Scientific Publishers ISBN 13 :3318063622 Total Pages :146 pages Book Rating :4.3/5 (18 download)
Book Synopsis Advances in Radiation Therapy by : M. Guckenberger
Download or read book Advances in Radiation Therapy written by M. Guckenberger and published by Karger Medical and Scientific Publishers. This book was released on 2018-04-12 with total page 146 pages. Available in PDF, EPUB and Kindle. Book excerpt: Developments in radiation oncology have been key to the tremendous progress made in the field in recent years. The combination of optimal systemic treatment and local therapy has resulted in continuing improved outcomes of cancer therapy. This progress forms the basis for current pre-clinical and clinical research which will strengthen the position of radiation oncology as an essential component of oncological care. This book summarizes recent advances in radiotherapy research and clinical patient care. Topics include radiobiology, radiotherapy technology, and particle therapy. Chapters cover a summary and analysis of recent developments in the search for biomarkers for precision radiotherapy, novel imaging possibilities and treatment planning, and advances in understanding the differences between photon and particle radiotherapy. Advances in Radiation Therapy is an invaluable source of information for scientists and clinicians working in the field of radiation oncology. It is also a relevant resource for those interested in the broad topic of radiotherapy in general.
Book Synopsis Radiation Therapy Physics by : Alfred R. Smith
Download or read book Radiation Therapy Physics written by Alfred R. Smith and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book is to provide a uniquely comprehensive source of information on the entire field of radiation therapy physics. The very significant advances in imaging, computational, and accelerator technologies receive full consideration, as do such topics as the dosimetry of radiolabeled antibodies and dose calculation models. The scope of the book and the expertise of the authors make it essential reading for interested physicians and physicists and for radiation dosimetrists.
Book Synopsis Big Data in Radiation Oncology by : Jun Deng
Download or read book Big Data in Radiation Oncology written by Jun Deng and published by CRC Press. This book was released on 2019-03-07 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: Big Data in Radiation Oncology gives readers an in-depth look into how big data is having an impact on the clinical care of cancer patients. While basic principles and key analytical and processing techniques are introduced in the early chapters, the rest of the book turns to clinical applications, in particular for cancer registries, informatics, radiomics, radiogenomics, patient safety and quality of care, patient-reported outcomes, comparative effectiveness, treatment planning, and clinical decision-making. More features of the book are: Offers the first focused treatment of the role of big data in the clinic and its impact on radiation therapy. Covers applications in cancer registry, radiomics, patient safety, quality of care, treatment planning, decision making, and other key areas. Discusses the fundamental principles and techniques for processing and analysis of big data. Address the use of big data in cancer prevention, detection, prognosis, and management. Provides practical guidance on implementation for clinicians and other stakeholders. Dr. Jun Deng is a professor at the Department of Therapeutic Radiology of Yale University School of Medicine and an ABR board certified medical physicist at Yale-New Haven Hospital. He has received numerous honors and awards such as Fellow of Institute of Physics in 2004, AAPM Medical Physics Travel Grant in 2008, ASTRO IGRT Symposium Travel Grant in 2009, AAPM-IPEM Medical Physics Travel Grant in 2011, and Fellow of AAPM in 2013. Lei Xing, Ph.D., is the Jacob Haimson Professor of Medical Physics and Director of Medical Physics Division of Radiation Oncology Department at Stanford University. His research has been focused on inverse treatment planning, tomographic image reconstruction, CT, optical and PET imaging instrumentations, image guided interventions, nanomedicine, and applications of molecular imaging in radiation oncology. Dr. Xing is on the editorial boards of a number of journals in radiation physics and medical imaging, and is recipient of numerous awards, including the American Cancer Society Research Scholar Award, The Whitaker Foundation Grant Award, and a Max Planck Institute Fellowship.
Book Synopsis Automated Scheduling and Planning by : A. Sima Uyar
Download or read book Automated Scheduling and Planning written by A. Sima Uyar and published by Springer. This book was released on 2013-07-12 with total page 311 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solving scheduling problems has long presented a challenge for computer scientists and operations researchers. The field continues to expand as researchers and practitioners examine ever more challenging problems and develop automated methods capable of solving them. This book provides 11 case studies in automated scheduling, submitted by leading researchers from across the world. Each case study examines a challenging real-world problem by analysing the problem in detail before investigating how the problem may be solved using state of the art techniques.The areas covered include aircraft scheduling, microprocessor instruction scheduling, sports fixture scheduling, exam scheduling, personnel scheduling and production scheduling. Problem solving methodologies covered include exact as well as (meta)heuristic approaches, such as local search techniques, linear programming, genetic algorithms and ant colony optimisation.The field of automated scheduling has the potential to impact many aspects of our lives and work; this book highlights contributions to the field by world class researchers.
Download or read book Artificial Intelligence written by and published by BoD – Books on Demand. This book was released on 2019-07-31 with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial intelligence (AI) is taking on an increasingly important role in our society today. In the early days, machines fulfilled only manual activities. Nowadays, these machines extend their capabilities to cognitive tasks as well. And now AI is poised to make a huge contribution to medical and biological applications. From medical equipment to diagnosing and predicting disease to image and video processing, among others, AI has proven to be an area with great potential. The ability of AI to make informed decisions, learn and perceive the environment, and predict certain behavior, among its many other skills, makes this application of paramount importance in today's world. This book discusses and examines AI applications in medicine and biology as well as challenges and opportunities in this fascinating area.
Book Synopsis Deep Learning in Medical Image Analysis by : Gobert Lee
Download or read book Deep Learning in Medical Image Analysis written by Gobert Lee and published by Springer Nature. This book was released on 2020-02-06 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents cutting-edge research and applications of deep learning in a broad range of medical imaging scenarios, such as computer-aided diagnosis, image segmentation, tissue recognition and classification, and other areas of medical and healthcare problems. Each of its chapters covers a topic in depth, ranging from medical image synthesis and techniques for muskuloskeletal analysis to diagnostic tools for breast lesions on digital mammograms and glaucoma on retinal fundus images. It also provides an overview of deep learning in medical image analysis and highlights issues and challenges encountered by researchers and clinicians, surveying and discussing practical approaches in general and in the context of specific problems. Academics, clinical and industry researchers, as well as young researchers and graduate students in medical imaging, computer-aided-diagnosis, biomedical engineering and computer vision will find this book a great reference and very useful learning resource.
Book Synopsis Introduction to Algorithms for Data Mining and Machine Learning by : Xin-She Yang
Download or read book Introduction to Algorithms for Data Mining and Machine Learning written by Xin-She Yang and published by Academic Press. This book was released on 2019-06-17 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Algorithms for Data Mining and Machine Learning introduces the essential ideas behind all key algorithms and techniques for data mining and machine learning, along with optimization techniques. Its strong formal mathematical approach, well selected examples, and practical software recommendations help readers develop confidence in their data modeling skills so they can process and interpret data for classification, clustering, curve-fitting and predictions. Masterfully balancing theory and practice, it is especially useful for those who need relevant, well explained, but not rigorous (proofs based) background theory and clear guidelines for working with big data. Presents an informal, theorem-free approach with concise, compact coverage of all fundamental topics Includes worked examples that help users increase confidence in their understanding of key algorithms, thus encouraging self-study Provides algorithms and techniques that can be implemented in any programming language, with each chapter including notes about relevant software packages
Book Synopsis Statistical Regression and Classification by : Norman Matloff
Download or read book Statistical Regression and Classification written by Norman Matloff and published by CRC Press. This book was released on 2017-09-19 with total page 439 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical Regression and Classification: From Linear Models to Machine Learning takes an innovative look at the traditional statistical regression course, presenting a contemporary treatment in line with today's applications and users. The text takes a modern look at regression: * A thorough treatment of classical linear and generalized linear models, supplemented with introductory material on machine learning methods. * Since classification is the focus of many contemporary applications, the book covers this topic in detail, especially the multiclass case. * In view of the voluminous nature of many modern datasets, there is a chapter on Big Data. * Has special Mathematical and Computational Complements sections at ends of chapters, and exercises are partitioned into Data, Math and Complements problems. * Instructors can tailor coverage for specific audiences such as majors in Statistics, Computer Science, or Economics. * More than 75 examples using real data. The book treats classical regression methods in an innovative, contemporary manner. Though some statistical learning methods are introduced, the primary methodology used is linear and generalized linear parametric models, covering both the Description and Prediction goals of regression methods. The author is just as interested in Description applications of regression, such as measuring the gender wage gap in Silicon Valley, as in forecasting tomorrow's demand for bike rentals. An entire chapter is devoted to measuring such effects, including discussion of Simpson's Paradox, multiple inference, and causation issues. Similarly, there is an entire chapter of parametric model fit, making use of both residual analysis and assessment via nonparametric analysis. Norman Matloff is a professor of computer science at the University of California, Davis, and was a founder of the Statistics Department at that institution. His current research focus is on recommender systems, and applications of regression methods to small area estimation and bias reduction in observational studies. He is on the editorial boards of the Journal of Statistical Computation and the R Journal. An award-winning teacher, he is the author of The Art of R Programming and Parallel Computation in Data Science: With Examples in R, C++ and CUDA.
Book Synopsis Treatment Planning of High Dose-Rate Brachytherapy - Mathematical Modelling and Optimization by : Björn Morén
Download or read book Treatment Planning of High Dose-Rate Brachytherapy - Mathematical Modelling and Optimization written by Björn Morén and published by Linköping University Electronic Press. This book was released on 2021-01-12 with total page 53 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cancer is a widespread class of diseases that each year affects millions of people. It is mostly treated with chemotherapy, surgery, radiation therapy, or combinations thereof. High doserate (HDR) brachytherapy (BT) is one modality of radiation therapy, which is used to treat for example prostate cancer and gynecologic cancer. In BT, catheters (i.e., hollow needles) or applicators are used to place a single, small, but highly radioactive source of ionizing radiation close to or within a tumour, at dwell positions. An emerging technique for HDR BT treatment is intensity modulated brachytherapy (IMBT), in which static or dynamic shields are used to further shape the dose distribution, by hindering the radiation in certain directions. The topic of this thesis is the application of mathematical optimization to model and solve the treatment planning problem. The treatment planning includes decisions on catheter placement, that is, how many catheters to use and where to place them, as well as decisions for dwell times. Our focus is on the latter decisions. The primary treatment goals are to give the tumour a sufficiently high radiation dose while limiting the dose to the surrounding healthy organs, to avoid severe side effects. Because these aims are typically in conflict, optimization models of the treatment planning problem are inherently multiobjective. Compared to manual treatment planning, there are several advantages of using mathematical optimization for treatment planning. First, the optimization of treatment plans requires less time, compared to the time-consuming manual planning. Secondly, treatment plan quality can be improved by using optimization models and algorithms. Finally, with the use of sophisticated optimization models and algorithms the requirements of experience and skill level for the planners are lower. The use of optimization for treatment planning of IMBT is especially important because the degrees of freedom are too many for manual planning. The contributions of this thesis include the study of properties of treatment planning models, suggestions for extensions and improvements of proposed models, and the development of new optimization models that take clinically relevant, but uncustomary aspects, into account in the treatment planning. A common theme is the modelling of constraints on dosimetric indices, each of which is a restriction on the portion of a volume that receives at least a specified dose, or on the lowest dose that is received by a portion of a volume. Modelling dosimetric indices explicitly yields mixed-integer programs which are computationally demanding to solve. We have therefore investigated approximations of dosimetric indices, for example using smooth non-linear functions or convex functions. Contributions of this thesis are also a literature review of proposed treatment planning models for HDR BT, including mathematical analyses and comparisons of models, and a study of treatment planning for IMBT, which shows how robust optimization can be used to mitigate the risks from rotational errors in the shield placement. Cancer är en grupp av sjukdomar som varje år drabbar miljontals människor. De vanligaste behandlingsformerna är cellgifter, kirurgi, strålbehandling eller en kombination av dessa. I denna avhandling studeras högdosrat brachyterapi (HDR BT), vilket är en form av strålbehandling som till exempel används vid behandling av prostatacancer och gynekologisk cancer. Vid brachyterapibehandling används ihåliga nålar eller applikatorer för att placera en millimeterstor strålkälla antingen inuti eller intill en tumör. I varje nål finns det ett antal så kallade dröjpositioner där strålkällan kan stanna en viss tid för att bestråla den omkringliggande vävnaden, i alla riktningar. Genom att välja lämpliga tider för dröjpositionerna kan dosfördelningen formas efter patientens anatomi. Utöver HDR BT studeras också den nya tekniken intensitetsmodulerad brachyterapi (IMBT) vilket är en variation på HDR BT där skärmning används för att minska strålningen i vissa riktningar vilket gör det möjligt att forma dosfördelningen bättre. Planeringen av en behandling med HDR BT omfattar hur många nålar som ska användas, var de ska placeras samt hur länge strålkällan ska stanna i de olika dröjpositionerna. För HDR BT kan dessa vara flera hundra stycken medan det för IMBT snarare handlar om tusentals möjliga kombinationer av dröjpositioner och inställningar av skärmarna. Planeringen resulterar i en dosplan som beskriver hur hög stråldos som tumören och intilliggande frisk vävnad och riskorgan utsätts för. Dosplaneringen kan formuleras som ett matematiskt optimeringsproblem vilket är ämnet för avhandlingen. De övergripande målsättningarna för behandlingen är att ge en tillräckligt hög stråldos till tumören, för att döda alla cancerceller, samt att undvika att bestråla riskorgan eftersom det kan ge allvarliga biverkningar. Då alla målsättningarna inte samtidigt kan uppnås fullt ut så fås optimeringsproblem där flera målsättningar behöver prioriteras mot varandra. Utöver att dosplanen uppfyller kliniska behandlingsriktlinjer så är också tidsaspekten av planeringen viktig eftersom det är vanligt att den görs medan patienten är bedövad eller sövd. Vid utvärdering av en dosplan används dos-volymmått. För en tumör anger ett dosvolymmått hur stor andel av tumören som får en stråldos som är högre än en specificerad nivå. Dos-volymmått utgör en viktig del av målen för dosplaner som tas upp i kliniska behandlingsriktlinjer och ett exempel på ett sådant mål vid behandling av prostatacancer är att 95% av prostatans volym ska få en stråldos som är minst den föreskrivna dosen. Dos-volymmått utläses ur de kliniskt betydelsefulla dos-volym histogrammen som för varje stråldosnivå anger motsvarande volym som erhåller den dosen. En fördel med att använda matematisk optimering för dosplanering är att det kan spara tid jämfört med manuell planering. Med väl utvecklade modeller så finns det också möjlighet att skapa bättre dosplaner, till exempel genom att riskorganen nås av en lägre dos men med bibehållen dos till tumören. Vidare så finns det även fördelar med en process som inte är lika personberoende och som inte kräver erfarenhet i lika stor utsträckning som manuell dosplanering i dagsläget gör. Vid IMBT är det dessutom så många frihetsgrader att manuell planering i stort sett blir omöjligt. I avhandlingen ligger fokus på hur dos-volymmått kan användas och modelleras explicit i optimeringsmodeller, så kallade dos-volymmodeller. Detta omfattar såväl analys av egenskaper hos befintliga modeller, utvidgningar av tidigare använda modeller samt utveckling av nya optimeringsmodeller. Eftersom dos-volymmodeller modelleras som heltalsproblem, vilka är beräkningskrävande att lösa, så är det också viktigt att utveckla algoritmer som kan lösa dem tillräckligt snabbt för klinisk användning. Ett annat mål för modellutvecklingen är att kunna ta hänsyn till fler kriterier som är kliniskt relevanta men som inte ingår i dos-volymmodeller. En sådan kategori av mått är hur dosen är fördelad rumsligt, exempelvis att volymen av sammanhängande områden som får en alldeles för hög dos ska vara liten. Sådana områden går dock inte att undvika helt eftersom det är typiskt för dosplaner för brachyterapi att stråldosen fördelar sig ojämnt, med väldigt höga doser till små volymer precis intill strålkällorna. Vidare studeras hur små fel i inställningarna av skärmningen i IMBT påverkar dosplanens kvalitet och de olika utvärderingsmått som används kliniskt. Robust optimering har använts för att säkerställa att en dosplan tas fram som är robust sett till dessa möjliga fel i hur skärmningen är placerad. Slutligen ges en omfattande översikt över optimeringsmodeller för dosplanering av HDR BT och speciellt hur optimeringsmodellerna hanterar de motstridiga målsättningarna.
Book Synopsis Intensity-Modulated Radiation Therapy by : S. Webb
Download or read book Intensity-Modulated Radiation Therapy written by S. Webb and published by CRC Press. This book was released on 2015-05-06 with total page 441 pages. Available in PDF, EPUB and Kindle. Book excerpt: Clinical conformal radiotherapy is the holy grail of radiation treatment and is now becoming a reality through the combined efforts of physical scientists and engineers, who have improved the physical basis of radiotherapy, and the interest and concern of imaginative radiotherapists and radiographers. Intensity-Modulated Radiation Therapy de
Book Synopsis Medical Image Registration by : Joseph V. Hajnal
Download or read book Medical Image Registration written by Joseph V. Hajnal and published by CRC Press. This book was released on 2001-06-27 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: Image registration is the process of systematically placing separate images in a common frame of reference so that the information they contain can be optimally integrated or compared. This is becoming the central tool for image analysis, understanding, and visualization in both medical and scientific applications. Medical Image Registration provid
Book Synopsis The Modern Technology of Radiation Oncology by : Jake Van Dyk
Download or read book The Modern Technology of Radiation Oncology written by Jake Van Dyk and published by Medical Physics Publishing Corporation. This book was released on 1999 with total page 1106 pages. Available in PDF, EPUB and Kindle. Book excerpt: Details technology associated with radiation oncology, emphasizing design of all equipment allied with radiation treatment. Describes procedures required to implement equipment in clinical service, covering needs assessment, purchase, acceptance, and commissioning, and explains quality assurance issues. Also addresses less common and evolving technologies. For medical physicists and radiation oncologists, as well as radiation therapists, dosimetrists, and engineering technologists. Includes bandw medical images and photos of equipment. Paper edition (unseen), $145.95. Annotation copyrighted by Book News, Inc., Portland, OR
Book Synopsis Radiomics and Radiogenomics by : Ruijiang Li
Download or read book Radiomics and Radiogenomics written by Ruijiang Li and published by CRC Press. This book was released on 2019-07-09 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: Radiomics and Radiogenomics: Technical Basis and Clinical Applications provides a first summary of the overlapping fields of radiomics and radiogenomics, showcasing how they are being used to evaluate disease characteristics and correlate with treatment response and patient prognosis. It explains the fundamental principles, technical bases, and clinical applications with a focus on oncology. The book’s expert authors present computational approaches for extracting imaging features that help to detect and characterize disease tissues for improving diagnosis, prognosis, and evaluation of therapy response. This book is intended for audiences including imaging scientists, medical physicists, as well as medical professionals and specialists such as diagnostic radiologists, radiation oncologists, and medical oncologists. Features Provides a first complete overview of the technical underpinnings and clinical applications of radiomics and radiogenomics Shows how they are improving diagnostic and prognostic decisions with greater efficacy Discusses the image informatics, quantitative imaging, feature extraction, predictive modeling, software tools, and other key areas Covers applications in oncology and beyond, covering all major disease sites in separate chapters Includes an introduction to basic principles and discussion of emerging research directions with a roadmap to clinical translation
Book Synopsis Artificial Intelligence in Medical Imaging by : Erik R. Ranschaert
Download or read book Artificial Intelligence in Medical Imaging written by Erik R. Ranschaert and published by Springer. This book was released on 2019-01-29 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a thorough overview of the ongoing evolution in the application of artificial intelligence (AI) within healthcare and radiology, enabling readers to gain a deeper insight into the technological background of AI and the impacts of new and emerging technologies on medical imaging. After an introduction on game changers in radiology, such as deep learning technology, the technological evolution of AI in computing science and medical image computing is described, with explanation of basic principles and the types and subtypes of AI. Subsequent sections address the use of imaging biomarkers, the development and validation of AI applications, and various aspects and issues relating to the growing role of big data in radiology. Diverse real-life clinical applications of AI are then outlined for different body parts, demonstrating their ability to add value to daily radiology practices. The concluding section focuses on the impact of AI on radiology and the implications for radiologists, for example with respect to training. Written by radiologists and IT professionals, the book will be of high value for radiologists, medical/clinical physicists, IT specialists, and imaging informatics professionals.