Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Probabilistic Inductive Logic Programming
Download Probabilistic Inductive Logic Programming full books in PDF, epub, and Kindle. Read online Probabilistic Inductive Logic Programming ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Probabilistic Inductive Logic Programming by : Luc De Raedt
Download or read book Probabilistic Inductive Logic Programming written by Luc De Raedt and published by Springer. This book was released on 2008-02-26 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to probabilistic inductive logic programming. It places emphasis on the methods based on logic programming principles and covers formalisms and systems, implementations and applications, as well as theory.
Book Synopsis Probabilistic Inductive Logic Programming by : Luc De Raedt
Download or read book Probabilistic Inductive Logic Programming written by Luc De Raedt and published by Springer Science & Business Media. This book was released on 2008-03-14 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: The question, how to combine probability and logic with learning, is getting an increased attention in several disciplines such as knowledge representation, reasoning about uncertainty, data mining, and machine learning simulateously. This results in the newly emerging subfield known under the names of statistical relational learning and probabilistic inductive logic programming. This book provides an introduction to the field with an emphasis on the methods based on logic programming principles. It is concerned with formalisms and systems, implementations and applications, as well as with the theory of probabilistic inductive logic programming. The 13 chapters of this state-of-the-art survey start with an introduction to probabilistic inductive logic programming; moreover the book presents a detailed overview of the most important probabilistic logic learning formalisms and systems such as relational sequence learning techniques, using kernels with logical representations, Markov logic, the PRISM system, CLP(BN), Bayesian logic programs, and the independent choice logic. The third part provides a detailed account of some show-case applications of probabilistic inductive logic programming. The final part touches upon some theoretical investigations and includes chapters on behavioural comparison of probabilistic logic programming representations and a model-theoretic expressivity analysis.
Book Synopsis Foundations of Probabilistic Logic Programming by : Fabrizio Riguzzi
Download or read book Foundations of Probabilistic Logic Programming written by Fabrizio Riguzzi and published by CRC Press. This book was released on 2023-07-07 with total page 548 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since its birth, the field of Probabilistic Logic Programming has seen a steady increase of activity, with many proposals for languages and algorithms for inference and learning. This book aims at providing an overview of the field with a special emphasis on languages under the Distribution Semantics, one of the most influential approaches. The book presents the main ideas for semantics, inference, and learning and highlights connections between the methods. Many examples of the book include a link to a page of the web application http://cplint.eu where the code can be run online. This 2nd edition aims at reporting the most exciting novelties in the field since the publication of the 1st edition. The semantics for hybrid programs with function symbols was placed on a sound footing. Probabilistic Answer Set Programming gained a lot of interest together with the studies on the complexity of inference. Algorithms for solving the MPE and MAP tasks are now available. Inference for hybrid programs has changed dramatically with the introduction of Weighted Model Integration. With respect to learning, the first approaches for neuro-symbolic integration have appeared together with algorithms for learning the structure for hybrid programs. Moreover, given the cost of learning PLPs, various works proposed language restrictions to speed up learning and improve its scaling.
Book Synopsis Relational Data Mining by : Saso Dzeroski
Download or read book Relational Data Mining written by Saso Dzeroski and published by Springer Science & Business Media. This book was released on 2001-08 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt: As the first book devoted to relational data mining, this coherently written multi-author monograph provides a thorough introduction and systematic overview of the area. The first part introduces the reader to the basics and principles of classical knowledge discovery in databases and inductive logic programming; subsequent chapters by leading experts assess the techniques in relational data mining in a principled and comprehensive way; finally, three chapters deal with advanced applications in various fields and refer the reader to resources for relational data mining. This book will become a valuable source of reference for R&D professionals active in relational data mining. Students as well as IT professionals and ambitioned practitioners interested in learning about relational data mining will appreciate the book as a useful text and gentle introduction to this exciting new field.
Book Synopsis Encyclopedia of Machine Learning by : Claude Sammut
Download or read book Encyclopedia of Machine Learning written by Claude Sammut and published by Springer Science & Business Media. This book was released on 2011-03-28 with total page 1061 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive encyclopedia, in A-Z format, provides easy access to relevant information for those seeking entry into any aspect within the broad field of Machine Learning. Most of the entries in this preeminent work include useful literature references.
Download or read book Markov Logic written by Pedro Dechter and published by Springer Nature. This book was released on 2022-05-31 with total page 145 pages. Available in PDF, EPUB and Kindle. Book excerpt: Most subfields of computer science have an interface layer via which applications communicate with the infrastructure, and this is key to their success (e.g., the Internet in networking, the relational model in databases, etc.). So far this interface layer has been missing in AI. First-order logic and probabilistic graphical models each have some of the necessary features, but a viable interface layer requires combining both. Markov logic is a powerful new language that accomplishes this by attaching weights to first-order formulas and treating them as templates for features of Markov random fields. Most statistical models in wide use are special cases of Markov logic, and first-order logic is its infinite-weight limit. Inference algorithms for Markov logic combine ideas from satisfiability, Markov chain Monte Carlo, belief propagation, and resolution. Learning algorithms make use of conditional likelihood, convex optimization, and inductive logic programming. Markov logic has been successfully applied to problems in information extraction and integration, natural language processing, robot mapping, social networks, computational biology, and others, and is the basis of the open-source Alchemy system. Table of Contents: Introduction / Markov Logic / Inference / Learning / Extensions / Applications / Conclusion
Book Synopsis Foundations of Probabilistic Programming by : Gilles Barthe
Download or read book Foundations of Probabilistic Programming written by Gilles Barthe and published by Cambridge University Press. This book was released on 2020-12-03 with total page 583 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an overview of the theoretical underpinnings of modern probabilistic programming and presents applications in e.g., machine learning, security, and approximate computing. Comprehensive survey chapters make the material accessible to graduate students and non-experts. This title is also available as Open Access on Cambridge Core.
Book Synopsis Practical Probabilistic Programming by : Avi Pfeffer
Download or read book Practical Probabilistic Programming written by Avi Pfeffer and published by Simon and Schuster. This book was released on 2016-03-29 with total page 650 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summary Practical Probabilistic Programming introduces the working programmer to probabilistic programming. In it, you'll learn how to use the PP paradigm to model application domains and then express those probabilistic models in code. Although PP can seem abstract, in this book you'll immediately work on practical examples, like using the Figaro language to build a spam filter and applying Bayesian and Markov networks, to diagnose computer system data problems and recover digital images. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology The data you accumulate about your customers, products, and website users can help you not only to interpret your past, it can also help you predict your future! Probabilistic programming uses code to draw probabilistic inferences from data. By applying specialized algorithms, your programs assign degrees of probability to conclusions. This means you can forecast future events like sales trends, computer system failures, experimental outcomes, and many other critical concerns. About the Book Practical Probabilistic Programming introduces the working programmer to probabilistic programming. In this book, you’ll immediately work on practical examples like building a spam filter, diagnosing computer system data problems, and recovering digital images. You’ll discover probabilistic inference, where algorithms help make extended predictions about issues like social media usage. Along the way, you’ll learn to use functional-style programming for text analysis, object-oriented models to predict social phenomena like the spread of tweets, and open universe models to gauge real-life social media usage. The book also has chapters on how probabilistic models can help in decision making and modeling of dynamic systems. What's Inside Introduction to probabilistic modeling Writing probabilistic programs in Figaro Building Bayesian networks Predicting product lifecycles Decision-making algorithms About the Reader This book assumes no prior exposure to probabilistic programming. Knowledge of Scala is helpful. About the Author Avi Pfeffer is the principal developer of the Figaro language for probabilistic programming. Table of Contents PART 1 INTRODUCING PROBABILISTIC PROGRAMMING AND FIGARO Probabilistic programming in a nutshell A quick Figaro tutorial Creating a probabilistic programming application PART 2 WRITING PROBABILISTIC PROGRAMS Probabilistic models and probabilistic programs Modeling dependencies with Bayesian and Markov networks Using Scala and Figaro collections to build up models Object-oriented probabilistic modeling Modeling dynamic systems PART 3 INFERENCE The three rules of probabilistic inference Factored inference algorithms Sampling algorithms Solving other inference tasks Dynamic reasoning and parameter learning
Book Synopsis Inductive Logic Programming by : Nada Lavrač
Download or read book Inductive Logic Programming written by Nada Lavrač and published by Ellis Horwood. This book was released on 1994 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Logical and Relational Learning by : Luc De Raedt
Download or read book Logical and Relational Learning written by Luc De Raedt and published by Springer Science & Business Media. This book was released on 2008-09-27 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt: This first textbook on multi-relational data mining and inductive logic programming provides a complete overview of the field. It is self-contained and easily accessible for graduate students and practitioners of data mining and machine learning.
Book Synopsis Inductive Logic Programming by : Francesco Bergadano
Download or read book Inductive Logic Programming written by Francesco Bergadano and published by MIT Press. This book was released on 1996 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although Inductive Logic Programming (ILP) is generally thought of as a research area at the intersection of machine learning and computational logic, Bergadano and Gunetti propose that most of the research in ILP has in fact come from machine learning, particularly in the evolution of inductive reasoning from pattern recognition, through initial approaches to symbolic machine learning, to recent techniques for learning relational concepts. In this book they provide an extended, up-to-date survey of ILP, emphasizing methods and systems suitable for software engineering applications, including inductive program development, testing, and maintenance. Inductive Logic Programming includes a definition of the basic ILP problem and its variations (incremental, with queries, for multiple predicates and predicate invention capabilities), a description of bottom-up operators and techniques (such as least general generalization, inverse resolution, and inverse implication), an analysis of top-down methods (mainly MIS and FOIL-like systems), and a survey of methods and languages for specifying inductive bias. Logic Programming series
Download or read book Logic Programming written by Bart Demoen and published by Springer. This book was released on 2004-11-18 with total page 492 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the papers presented at the 20th International Conference on Logic Programming,held in Saint-Malo,France,September 6-10,2004.Since the ?rst meeting in this series, held in Marseilles in 1982, ICLP has been the premier international conference for presenting research in logic programming. This year, we received 70 technical papers from countries all over the world, and the Program Committee accepted 28 of them for presentation;they are included in this volume. A stand-by-your-poster session took place during the conference. It served as a forum for presenting work in a more informal and interactive setting. Abstracts of the 16 posters selected by the Program Committee are included in this volume as well. The conference program also included invited talks and invited tutorials. We were privileged to have talks by three outstanding researchers and excellent speakers: Nachum Dershowitz (Tel Aviv University, Israel) talked on Ter- nation by Abstraction, Michael Gelfond (Texas Tech University, USA) on - swer Set Programming and the Design of Deliberative Agents,andG ́ erard Huet (INRIA, France) on Non-determinism Lessons. Two of the invited talks appear in these proceedings. The tutorials covered topics of high interest to the logic programming community: Ilkka Niemel ̈ a gave a tutorial on The Implementation of Answer Set Solvers, Andreas Podelskion Tree Automata in Program Analysis and Veri?cation, and Guillermo R. Simari on Defeasible Logic Programming and Belief Revision. Satellite workshops made the conference even more interesting. Six workshops collocated with ICLP 2004: - CICLOPS2004, Colloquium on Implementation of Constraint and Logic Programming Systems, organized by Manuel Carro. - COLOPS2004, 2nd International Workshop on Constraint & Logic Progr- ming in Security, organized by Frank Valencia. - MultiCPL2004, 3rd International Workshop on Multiparadigm Constraint, organized by Petra Hofstedt. - Teach LP2004,1st International Workshop on Teaching Logic Programming, organized by Dietmar Seipel.
Book Synopsis Learning Language in Logic by : James Cussens
Download or read book Learning Language in Logic written by James Cussens and published by . This book was released on 2014-01-15 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis An Introduction to Probability and Inductive Logic by : Ian Hacking
Download or read book An Introduction to Probability and Inductive Logic written by Ian Hacking and published by Cambridge University Press. This book was released on 2001-07-02 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introductory 2001 textbook on probability and induction written by a foremost philosopher of science.
Book Synopsis Lectures on Inductive Logic by : Jon Williamson
Download or read book Lectures on Inductive Logic written by Jon Williamson and published by Oxford University Press. This book was released on 2017 with total page 217 pages. Available in PDF, EPUB and Kindle. Book excerpt: Inductive logic is a theory of how one should reason in the face of uncertainty. It has applications to decision making and artificial intelligence, as well as to scientific problems.
Book Synopsis Statistical Relational Artificial Intelligence by : Luc De Raedt
Download or read book Statistical Relational Artificial Intelligence written by Luc De Raedt and published by Morgan & Claypool Publishers. This book was released on 2016-03-24 with total page 191 pages. Available in PDF, EPUB and Kindle. Book excerpt: An intelligent agent interacting with the real world will encounter individual people, courses, test results, drugs prescriptions, chairs, boxes, etc., and needs to reason about properties of these individuals and relations among them as well as cope with uncertainty. Uncertainty has been studied in probability theory and graphical models, and relations have been studied in logic, in particular in the predicate calculus and its extensions. This book examines the foundations of combining logic and probability into what are called relational probabilistic models. It introduces representations, inference, and learning techniques for probability, logic, and their combinations. The book focuses on two representations in detail: Markov logic networks, a relational extension of undirected graphical models and weighted first-order predicate calculus formula, and Problog, a probabilistic extension of logic programs that can also be viewed as a Turing-complete relational extension of Bayesian networks.
Book Synopsis Inductive Logic Programming by : Hendrik Blockeel
Download or read book Inductive Logic Programming written by Hendrik Blockeel and published by Springer Science & Business Media. This book was released on 2008-03-14 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the thoroughly refereed post-conference proceedings of the 17th International Conference on Inductive Logic Programming, ILP 2007, held in Corvallis, OR, USA, in June 2007 in conjunction with ICML 2007, the International Conference on Machine Learning. The 15 revised full papers and 11 revised short papers presented together with 2 invited lectures were carefully reviewed and selected from 38 initial submissions. The papers present original results on all aspects of learning in logic, as well as multi-relational learning and data mining, statistical relational learning, graph and tree mining, relational reinforcement learning, and learning in other non-propositional knowledge representation frameworks. Thus all current topics in inductive logic programming, ranging from theoretical and methodological issues to advanced applications in various areas are covered.