Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Probabilistic And Biologically Inspired Feature Representations
Download Probabilistic And Biologically Inspired Feature Representations full books in PDF, epub, and Kindle. Read online Probabilistic And Biologically Inspired Feature Representations ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Probabilistic and Biologically Inspired Feature Representations by : Michael Felsberg
Download or read book Probabilistic and Biologically Inspired Feature Representations written by Michael Felsberg and published by Springer Nature. This book was released on 2022-05-31 with total page 89 pages. Available in PDF, EPUB and Kindle. Book excerpt: Under the title "Probabilistic and Biologically Inspired Feature Representations," this text collects a substantial amount of work on the topic of channel representations. Channel representations are a biologically motivated, wavelet-like approach to visual feature descriptors: they are local and compact, they form a computational framework, and the represented information can be reconstructed. The first property is shared with many histogram- and signature-based descriptors, the latter property with the related concept of population codes. In their unique combination of properties, channel representations become a visual Swiss army knife—they can be used for image enhancement, visual object tracking, as 2D and 3D descriptors, and for pose estimation. In the chapters of this text, the framework of channel representations will be introduced and its attributes will be elaborated, as well as further insight into its probabilistic modeling and algorithmic implementation will be given. Channel representations are a useful toolbox to represent visual information for machine learning, as they establish a generic way to compute popular descriptors such as HOG, SIFT, and SHOT. Even in an age of deep learning, they provide a good compromise between hand-designed descriptors and a-priori structureless feature spaces as seen in the layers of deep networks.
Book Synopsis Probabilistic and Biologically Inspired Feature Representations by : Michael Felsberg
Download or read book Probabilistic and Biologically Inspired Feature Representations written by Michael Felsberg and published by Morgan & Claypool Publishers. This book was released on 2018-05-29 with total page 105 pages. Available in PDF, EPUB and Kindle. Book excerpt: Under the title "Probabilistic and Biologically Inspired Feature Representations," this text collects a substantial amount of work on the topic of channel representations. Channel representations are a biologically motivated, wavelet-like approach to visual feature descriptors: they are local and compact, they form a computational framework, and the represented information can be reconstructed. The first property is shared with many histogram- and signature-based descriptors, the latter property with the related concept of population codes. In their unique combination of properties, channel representations become a visual Swiss army knife—they can be used for image enhancement, visual object tracking, as 2D and 3D descriptors, and for pose estimation. In the chapters of this text, the framework of channel representations will be introduced and its attributes will be elaborated, as well as further insight into its probabilistic modeling and algorithmic implementation will be given. Channel representations are a useful toolbox to represent visual information for machine learning, as they establish a generic way to compute popular descriptors such as HOG, SIFT, and SHOT. Even in an age of deep learning, they provide a good compromise between hand-designed descriptors and a-priori structureless feature spaces as seen in the layers of deep networks.
Book Synopsis Advanced Methods and Deep Learning in Computer Vision by : E. R. Davies
Download or read book Advanced Methods and Deep Learning in Computer Vision written by E. R. Davies and published by Academic Press. This book was released on 2021-11-09 with total page 584 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced Methods and Deep Learning in Computer Vision presents advanced computer vision methods, emphasizing machine and deep learning techniques that have emerged during the past 5–10 years. The book provides clear explanations of principles and algorithms supported with applications. Topics covered include machine learning, deep learning networks, generative adversarial networks, deep reinforcement learning, self-supervised learning, extraction of robust features, object detection, semantic segmentation, linguistic descriptions of images, visual search, visual tracking, 3D shape retrieval, image inpainting, novelty and anomaly detection. This book provides easy learning for researchers and practitioners of advanced computer vision methods, but it is also suitable as a textbook for a second course on computer vision and deep learning for advanced undergraduates and graduate students. - Provides an important reference on deep learning and advanced computer methods that was created by leaders in the field - Illustrates principles with modern, real-world applications - Suitable for self-learning or as a text for graduate courses
Book Synopsis Visual Domain Adaptation in the Deep Learning Era by : Gabriela Csurka
Download or read book Visual Domain Adaptation in the Deep Learning Era written by Gabriela Csurka and published by Springer Nature. This book was released on 2022-06-06 with total page 182 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solving problems with deep neural networks typically relies on massive amounts of labeled training data to achieve high performance. While in many situations huge volumes of unlabeled data can be and often are generated and available, the cost of acquiring data labels remains high. Transfer learning (TL), and in particular domain adaptation (DA), has emerged as an effective solution to overcome the burden of annotation, exploiting the unlabeled data available from the target domain together with labeled data or pre-trained models from similar, yet different source domains. The aim of this book is to provide an overview of such DA/TL methods applied to computer vision, a field whose popularity has increased significantly in the last few years. We set the stage by revisiting the theoretical background and some of the historical shallow methods before discussing and comparing different domain adaptation strategies that exploit deep architectures for visual recognition. We introduce the space of self-training-based methods that draw inspiration from the related fields of deep semi-supervised and self-supervised learning in solving the deep domain adaptation. Going beyond the classic domain adaptation problem, we then explore the rich space of problem settings that arise when applying domain adaptation in practice such as partial or open-set DA, where source and target data categories do not fully overlap, continuous DA where the target data comes as a stream, and so on. We next consider the least restrictive setting of domain generalization (DG), as an extreme case where neither labeled nor unlabeled target data are available during training. Finally, we close by considering the emerging area of learning-to-learn and how it can be applied to further improve existing approaches to cross domain learning problems such as DA and DG.
Book Synopsis Computer Vision in the Infrared Spectrum by : Michael Teutsch
Download or read book Computer Vision in the Infrared Spectrum written by Michael Teutsch and published by Springer Nature. This book was released on 2022-06-01 with total page 128 pages. Available in PDF, EPUB and Kindle. Book excerpt: Human visual perception is limited to the visual-optical spectrum. Machine vision is not. Cameras sensitive to the different infrared spectra can enhance the abilities of autonomous systems and visually perceive the environment in a holistic way. Relevant scene content can be made visible especially in situations, where sensors of other modalities face issues like a visual-optical camera that needs a source of illumination. As a consequence, not only human mistakes can be avoided by increasing the level of automation, but also machine-induced errors can be reduced that, for example, could make a self-driving car crash into a pedestrian under difficult illumination conditions. Furthermore, multi-spectral sensor systems with infrared imagery as one modality are a rich source of information and can provably increase the robustness of many autonomous systems. Applications that can benefit from utilizing infrared imagery range from robotics to automotive and from biometrics to surveillance. In this book, we provide a brief yet concise introduction to the current state-of-the-art of computer vision and machine learning in the infrared spectrum. Based on various popular computer vision tasks such as image enhancement, object detection, or object tracking, we first motivate each task starting from established literature in the visual-optical spectrum. Then, we discuss the differences between processing images and videos in the visual-optical spectrum and the various infrared spectra. An overview of the current literature is provided together with an outlook for each task. Furthermore, available and annotated public datasets and common evaluation methods and metrics are presented. In a separate chapter, popular applications that can greatly benefit from the use of infrared imagery as a data source are presented and discussed. Among them are automatic target recognition, video surveillance, or biometrics including face recognition. Finally, we conclude with recommendations for well-fitting sensor setups and data processing algorithms for certain computer vision tasks. We address this book to prospective researchers and engineers new to the field but also to anyone who wants to get introduced to the challenges and the approaches of computer vision using infrared images or videos. Readers will be able to start their work directly after reading the book supported by a highly comprehensive backlog of recent and relevant literature as well as related infrared datasets including existing evaluation frameworks. Together with consistently decreasing costs for infrared cameras, new fields of application appear and make computer vision in the infrared spectrum a great opportunity to face nowadays scientific and engineering challenges.
Book Synopsis Computational Texture and Patterns by : Kristin J. Dana
Download or read book Computational Texture and Patterns written by Kristin J. Dana and published by Springer Nature. This book was released on 2022-05-31 with total page 99 pages. Available in PDF, EPUB and Kindle. Book excerpt: Visual pattern analysis is a fundamental tool in mining data for knowledge. Computational representations for patterns and texture allow us to summarize, store, compare, and label in order to learn about the physical world. Our ability to capture visual imagery with cameras and sensors has resulted in vast amounts of raw data, but using this information effectively in a task-specific manner requires sophisticated computational representations. We enumerate specific desirable traits for these representations: (1) intraclass invariance—to support recognition; (2) illumination and geometric invariance for robustness to imaging conditions; (3) support for prediction and synthesis to use the model to infer continuation of the pattern; (4) support for change detection to detect anomalies and perturbations; and (5) support for physics-based interpretation to infer system properties from appearance. In recent years, computer vision has undergone a metamorphosis with classic algorithms adapting to new trends in deep learning. This text provides a tour of algorithm evolution including pattern recognition, segmentation and synthesis. We consider the general relevance and prominence of visual pattern analysis and applications that rely on computational models.
Book Synopsis Multi-Modal Face Presentation Attack Detection by : Jun Wan
Download or read book Multi-Modal Face Presentation Attack Detection written by Jun Wan and published by Springer Nature. This book was released on 2022-05-31 with total page 76 pages. Available in PDF, EPUB and Kindle. Book excerpt: For the last ten years, face biometric research has been intensively studied by the computer vision community. Face recognition systems have been used in mobile, banking, and surveillance systems. For face recognition systems, face spoofing attack detection is a crucial stage that could cause severe security issues in government sectors. Although effective methods for face presentation attack detection have been proposed so far, the problem is still unsolved due to the difficulty in the design of features and methods that can work for new spoofing attacks. In addition, existing datasets for studying the problem are relatively small which hinders the progress in this relevant domain. In order to attract researchers to this important field and push the boundaries of the state of the art on face anti-spoofing detection, we organized the Face Spoofing Attack Workshop and Competition at CVPR 2019, an event part of the ChaLearn Looking at People Series. As part of this event, we released the largest multi-modal face anti-spoofing dataset so far, the CASIA-SURF benchmark. The workshop reunited many researchers from around the world and the challenge attracted more than 300 teams. Some of the novel methodologies proposed in the context of the challenge achieved state-of-the-art performance. In this manuscript, we provide a comprehensive review on face anti-spoofing techniques presented in this joint event and point out directions for future research on the face anti-spoofing field.
Book Synopsis Tenth International Conference on Applications and Techniques in Cyber Intelligence (ICATCI 2022) by : Jemal H. Abawajy
Download or read book Tenth International Conference on Applications and Techniques in Cyber Intelligence (ICATCI 2022) written by Jemal H. Abawajy and published by Springer Nature. This book was released on 2023-03-29 with total page 775 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents innovative ideas, cutting-edge findings, and novel techniques, methods, and applications in a broad range of cybersecurity and cyberthreat intelligence areas. As our society becomes smarter, there is a corresponding need to secure our cyberfuture. The book describes approaches and findings that are of interest to business professionals and governments seeking to secure our data and underpin infrastructures, as well as to individual users.
Book Synopsis Person Re-Identification with Limited Supervision by : Rameswar Panda
Download or read book Person Re-Identification with Limited Supervision written by Rameswar Panda and published by Springer Nature. This book was released on 2022-06-01 with total page 86 pages. Available in PDF, EPUB and Kindle. Book excerpt: Person re-identification is the problem of associating observations of targets in different non-overlapping cameras. Most of the existing learning-based methods have resulted in improved performance on standard re-identification benchmarks, but at the cost of time-consuming and tediously labeled data. Motivated by this, learning person re-identification models with limited to no supervision has drawn a great deal of attention in recent years. In this book, we provide an overview of some of the literature in person re-identification, and then move on to focus on some specific problems in the context of person re-identification with limited supervision in multi-camera environments. We expect this to lead to interesting problems for researchers to consider in the future, beyond the conventional fully supervised setup that has been the framework for a lot of work in person re-identification. Chapter 1 starts with an overview of the problems in person re-identification and the major research directions. We provide an overview of the prior works that align most closely with the limited supervision theme of this book. Chapter 2 demonstrates how global camera network constraints in the form of consistency can be utilized for improving the accuracy of camera pair-wise person re-identification models and also selecting a minimal subset of image pairs for labeling without compromising accuracy. Chapter 3 presents two methods that hold the potential for developing highly scalable systems for video person re-identification with limited supervision. In the one-shot setting where only one tracklet per identity is labeled, the objective is to utilize this small labeled set along with a larger unlabeled set of tracklets to obtain a re-identification model. Another setting is completely unsupervised without requiring any identity labels. The temporal consistency in the videos allows us to infer about matching objects across the cameras with higher confidence, even with limited to no supervision. Chapter 4 investigates person re-identification in dynamic camera networks. Specifically, we consider a novel problem that has received very little attention in the community but is critically important for many applications where a new camera is added to an existing group observing a set of targets. We propose two possible solutions for on-boarding new camera(s) dynamically to an existing network using transfer learning with limited additional supervision. Finally, Chapter 5 concludes the book by highlighting the major directions for future research.
Book Synopsis Biologically Inspired Cognitive Architectures 2018 by : Alexei V. Samsonovich
Download or read book Biologically Inspired Cognitive Architectures 2018 written by Alexei V. Samsonovich and published by Springer. This book was released on 2018-08-23 with total page 377 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book focuses on original approaches intended to support the development of biologically inspired cognitive architectures. It bridges together different disciplines, from classical artificial intelligence to linguistics, from neuro- and social sciences to design and creativity, among others. The chapters, based on contributions presented at the Ninth Annual Meeting of the BICA Society, held in on August 23-24, 2018, in Prague, Czech Republic, discuss emerging methods, theories and ideas towards the realization of general-purpose humanlike artificial intelligence or fostering a better understanding of the ways the human mind works. All in all, the book provides engineers, mathematicians, psychologists, computer scientists and other experts with a timely snapshot of recent research and a source of inspiration for future developments in the broadly intended areas of artificial intelligence and biological inspiration.
Book Synopsis Bio-Inspired and Nanoscale Integrated Computing by : Mary Mehrnoosh Eshaghian-Wilner
Download or read book Bio-Inspired and Nanoscale Integrated Computing written by Mary Mehrnoosh Eshaghian-Wilner and published by John Wiley & Sons. This book was released on 2009-06-22 with total page 582 pages. Available in PDF, EPUB and Kindle. Book excerpt: Brings the latest advances in nanotechnology and biology to computing This pioneering book demonstrates how nanotechnology can create even faster, denser computing architectures and algorithms. Furthermore, it draws from the latest advances in biology with a focus on bio-inspired computing at the nanoscale, bringing to light several new and innovative applications such as nanoscale implantable biomedical devices and neural networks. Bio-Inspired and Nanoscale Integrated Computing features an expert team of interdisciplinary authors who offer readers the benefit of their own breakthroughs in integrated computing as well as a thorough investigation and analyses of the literature. Carefully edited, the book begins with an introductory chapter providing a general overview of the field. It ends with a chapter setting forth the common themes that tie the chapters together as well as a forecast of emerging avenues of research. Among the important topics addressed in the book are modeling of nano devices, quantum computing, quantum dot cellular automata, dielectrophoretic reconfigurable nano architectures, multilevel and three-dimensional nanomagnetic recording, spin-wave architectures and algorithms, fault-tolerant nanocomputing, molecular computing, self-assembly of supramolecular nanostructures, DNA nanotechnology and computing, nanoscale DNA sequence matching, medical nanorobotics, heterogeneous nanostructures for biomedical diagnostics, biomimetic cortical nanocircuits, bio-applications of carbon nanotubes, and nanoscale image processing. Readers in electrical engineering, computer science, and computational biology will gain new insights into how bio-inspired and nanoscale devices can be used to design the next generation of enhanced integrated circuits.
Book Synopsis Learning to Analyze what is Beyond the Visible Spectrum by : Amanda Berg
Download or read book Learning to Analyze what is Beyond the Visible Spectrum written by Amanda Berg and published by Linköping University Electronic Press. This book was released on 2019-11-13 with total page 111 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thermal cameras have historically been of interest mainly for military applications. Increasing image quality and resolution combined with decreasing camera price and size during recent years have, however, opened up new application areas. They are now widely used for civilian applications, e.g., within industry, to search for missing persons, in automotive safety, as well as for medical applications. Thermal cameras are useful as soon as there exists a measurable temperature difference. Compared to cameras operating in the visual spectrum, they are advantageous due to their ability to see in total darkness, robustness to illumination variations, and less intrusion on privacy. This thesis addresses the problem of automatic image analysis in thermal infrared images with a focus on machine learning methods. The main purpose of this thesis is to study the variations of processing required due to the thermal infrared data modality. In particular, three different problems are addressed: visual object tracking, anomaly detection, and modality transfer. All these are research areas that have been and currently are subject to extensive research. Furthermore, they are all highly relevant for a number of different real-world applications. The first addressed problem is visual object tracking, a problem for which no prior information other than the initial location of the object is given. The main contribution concerns benchmarking of short-term single-object (STSO) visual object tracking methods in thermal infrared images. The proposed dataset, LTIR (Linköping Thermal Infrared), was integrated in the VOT-TIR2015 challenge, introducing the first ever organized challenge on STSO tracking in thermal infrared video. Another contribution also related to benchmarking is a novel, recursive, method for semi-automatic annotation of multi-modal video sequences. Based on only a few initial annotations, a video object segmentation (VOS) method proposes segmentations for all remaining frames and difficult parts in need for additional manual annotation are automatically detected. The third contribution to the problem of visual object tracking is a template tracking method based on a non-parametric probability density model of the object's thermal radiation using channel representations. The second addressed problem is anomaly detection, i.e., detection of rare objects or events. The main contribution is a method for truly unsupervised anomaly detection based on Generative Adversarial Networks (GANs). The method employs joint training of the generator and an observation to latent space encoder, enabling stratification of the latent space and, thus, also separation of normal and anomalous samples. The second contribution is the previously unaddressed problem of obstacle detection in front of moving trains using a train-mounted thermal camera. Adaptive correlation filters are updated continuously and missed detections of background are treated as detections of anomalies, or obstacles. The third contribution to the problem of anomaly detection is a method for characterization and classification of automatically detected district heat leakages for the purpose of false alarm reduction. Finally, the thesis addresses the problem of modality transfer between thermal infrared and visual spectrum images, a previously unaddressed problem. The contribution is a method based on Convolutional Neural Networks (CNNs), enabling perceptually realistic transformations of thermal infrared to visual images. By careful design of the loss function the method becomes robust to image pair misalignments. The method exploits the lower acuity for color differences than for luminance possessed by the human visual system, separating the loss into a luminance and a chrominance part.
Book Synopsis Bio-inspired Physiological Signal(s) and Medical Image(s) Neural Processing Systems Based on Deep Learning and Mathematical Modeling for Implementing Bio-Engineering Applications in Medical and Industrial Fields by : Francesco Rundo
Download or read book Bio-inspired Physiological Signal(s) and Medical Image(s) Neural Processing Systems Based on Deep Learning and Mathematical Modeling for Implementing Bio-Engineering Applications in Medical and Industrial Fields written by Francesco Rundo and published by Frontiers Media SA. This book was released on 2021-12-31 with total page 213 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Bio-inspired computation and its applications by : Tinggui Chen
Download or read book Bio-inspired computation and its applications written by Tinggui Chen and published by Frontiers Media SA. This book was released on 2023-07-06 with total page 939 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Bio-Inspired Systems: Computational and Ambient Intelligence by : Joan Cabestany
Download or read book Bio-Inspired Systems: Computational and Ambient Intelligence written by Joan Cabestany and published by Springer. This book was released on 2009-06-05 with total page 1403 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents the set of final accepted papers for the tenth edition of the IWANN conference “International Work-Conference on Artificial neural Networks” held in Salamanca (Spain) during June 10–12, 2009. IWANN is a biennial conference focusing on the foundations, theory, models and applications of systems inspired by nature (mainly, neural networks, evolutionary and soft-computing systems). Since the first edition in Granada (LNCS 540, 1991), the conference has evolved and matured. The list of topics in the successive Call for - pers has also evolved, resulting in the following list for the present edition: 1. Mathematical and theoretical methods in computational intelligence. C- plex and social systems. Evolutionary and genetic algorithms. Fuzzy logic. Mathematics for neural networks. RBF structures. Self-organizing networks and methods. Support vector machines. 2. Neurocomputational formulations. Single-neuron modelling. Perceptual m- elling. System-level neural modelling. Spiking neurons. Models of biological learning. 3. Learning and adaptation. Adaptive systems. Imitation learning. Reconfig- able systems. Supervised, non-supervised, reinforcement and statistical al- rithms. 4. Emulation of cognitive functions. Decision making. Multi-agent systems. S- sor mesh. Natural language. Pattern recognition. Perceptual and motor functions (visual, auditory, tactile, virtual reality, etc.). Robotics. Planning motor control. 5. Bio-inspired systems and neuro-engineering. Embedded intelligent systems. Evolvable computing. Evolving hardware. Microelectronics for neural, fuzzy and bio-inspired systems. Neural prostheses. Retinomorphic systems. Bra- computer interfaces (BCI). Nanosystems. Nanocognitive systems.
Book Synopsis Understanding and Bridging the Gap between Neuromorphic Computing and Machine Learning by : Lei Deng
Download or read book Understanding and Bridging the Gap between Neuromorphic Computing and Machine Learning written by Lei Deng and published by Frontiers Media SA. This book was released on 2021-05-05 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Graph Representation Learning by : William L. William L. Hamilton
Download or read book Graph Representation Learning written by William L. William L. Hamilton and published by Springer Nature. This book was released on 2022-06-01 with total page 141 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graph-structured data is ubiquitous throughout the natural and social sciences, from telecommunication networks to quantum chemistry. Building relational inductive biases into deep learning architectures is crucial for creating systems that can learn, reason, and generalize from this kind of data. Recent years have seen a surge in research on graph representation learning, including techniques for deep graph embeddings, generalizations of convolutional neural networks to graph-structured data, and neural message-passing approaches inspired by belief propagation. These advances in graph representation learning have led to new state-of-the-art results in numerous domains, including chemical synthesis, 3D vision, recommender systems, question answering, and social network analysis. This book provides a synthesis and overview of graph representation learning. It begins with a discussion of the goals of graph representation learning as well as key methodological foundations in graph theory and network analysis. Following this, the book introduces and reviews methods for learning node embeddings, including random-walk-based methods and applications to knowledge graphs. It then provides a technical synthesis and introduction to the highly successful graph neural network (GNN) formalism, which has become a dominant and fast-growing paradigm for deep learning with graph data. The book concludes with a synthesis of recent advancements in deep generative models for graphs—a nascent but quickly growing subset of graph representation learning.