Numbers and Geometry

Download Numbers and Geometry PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461206871
Total Pages : 348 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Numbers and Geometry by : John Stillwell

Download or read book Numbers and Geometry written by John Stillwell and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: A beautiful and relatively elementary account of a part of mathematics where three main fields - algebra, analysis and geometry - meet. The book provides a broad view of these subjects at the level of calculus, without being a calculus book. Its roots are in arithmetic and geometry, the two opposite poles of mathematics, and the source of historic conceptual conflict. The resolution of this conflict, and its role in the development of mathematics, is one of the main stories in the book. Stillwell has chosen an array of exciting and worthwhile topics and elegantly combines mathematical history with mathematics. He covers the main ideas of Euclid, but with 2000 years of extra insights attached. Presupposing only high school algebra, it can be read by any well prepared student entering university. Moreover, this book will be popular with graduate students and researchers in mathematics due to its attractive and unusual treatment of fundamental topics. A set of well-written exercises at the end of each section allows new ideas to be instantly tested and reinforced.

The Geometry of Numbers

Download The Geometry of Numbers PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780883856437
Total Pages : 198 pages
Book Rating : 4.8/5 (564 download)

DOWNLOAD NOW!


Book Synopsis The Geometry of Numbers by : C. D. Olds

Download or read book The Geometry of Numbers written by C. D. Olds and published by Cambridge University Press. This book was released on 2001-02-22 with total page 198 pages. Available in PDF, EPUB and Kindle. Book excerpt: A self-contained introduction to the geometry of numbers.

You Can Count on Monsters

Download You Can Count on Monsters PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470422093
Total Pages : 246 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis You Can Count on Monsters by : Richard Evan Schwartz

Download or read book You Can Count on Monsters written by Richard Evan Schwartz and published by American Mathematical Soc.. This book was released on 2015-03-19 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a unique teaching tool that takes math lovers on a journey designed to motivate kids (and kids at heart) to learn the fun of factoring and prime numbers. This volume visually explores the concepts of factoring and the role of prime and composite numbers. The playful and colorful monsters are designed to give children (and even older audiences) an intuitive understanding of the building blocks of numbers and the basics of multiplication. The introduction and appendices can also help adult readers answer questions about factoring from their young audience. The artwork is crisp and creative and the colors are bright and engaging, making this volume a welcome deviation from standard math texts. Any person, regardless of age, can profit from reading this book. Readers will find themselves returning to its pages for a very long time, continually learning from and getting to know the monsters as their knowledge expands. You Can Count on Monsters is a magnificent addition for any math education program and is enthusiastically recommended to every teacher, parent and grandparent, student, child, or other individual interested in exploring the visually fascinating world of the numbers 1 through 100.

17 Lectures on Fermat Numbers

Download 17 Lectures on Fermat Numbers PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387218505
Total Pages : 280 pages
Book Rating : 4.3/5 (872 download)

DOWNLOAD NOW!


Book Synopsis 17 Lectures on Fermat Numbers by : Michal Krizek

Download or read book 17 Lectures on Fermat Numbers written by Michal Krizek and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: The pioneering work of Pierre de Fermat has attracted the attention of mathematicians for over 350 years. This book provides an overview of the many properties of Fermat numbers and demonstrates their applications in areas such as number theory, probability theory, geometry, and signal processing. It is an ideal introduction to the basic mathematical ideas and algebraic methods connected with the Fermat numbers.

Number Theory and Geometry: An Introduction to Arithmetic Geometry

Download Number Theory and Geometry: An Introduction to Arithmetic Geometry PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 147045016X
Total Pages : 506 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Number Theory and Geometry: An Introduction to Arithmetic Geometry by : Álvaro Lozano-Robledo

Download or read book Number Theory and Geometry: An Introduction to Arithmetic Geometry written by Álvaro Lozano-Robledo and published by American Mathematical Soc.. This book was released on 2019-03-21 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geometry and the theory of numbers are as old as some of the oldest historical records of humanity. Ever since antiquity, mathematicians have discovered many beautiful interactions between the two subjects and recorded them in such classical texts as Euclid's Elements and Diophantus's Arithmetica. Nowadays, the field of mathematics that studies the interactions between number theory and algebraic geometry is known as arithmetic geometry. This book is an introduction to number theory and arithmetic geometry, and the goal of the text is to use geometry as the motivation to prove the main theorems in the book. For example, the fundamental theorem of arithmetic is a consequence of the tools we develop in order to find all the integral points on a line in the plane. Similarly, Gauss's law of quadratic reciprocity and the theory of continued fractions naturally arise when we attempt to determine the integral points on a curve in the plane given by a quadratic polynomial equation. After an introduction to the theory of diophantine equations, the rest of the book is structured in three acts that correspond to the study of the integral and rational solutions of linear, quadratic, and cubic curves, respectively. This book describes many applications including modern applications in cryptography; it also presents some recent results in arithmetic geometry. With many exercises, this book can be used as a text for a first course in number theory or for a subsequent course on arithmetic (or diophantine) geometry at the junior-senior level.

Let's Play Math

Download Let's Play Math PDF Online Free

Author :
Publisher : Tabletop Academy Press
ISBN 13 : 1892083248
Total Pages : 288 pages
Book Rating : 4.8/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Let's Play Math by : Denise Gaskins

Download or read book Let's Play Math written by Denise Gaskins and published by Tabletop Academy Press. This book was released on 2012-09-04 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Geometry of Complex Numbers

Download Geometry of Complex Numbers PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 0486135861
Total Pages : 228 pages
Book Rating : 4.4/5 (861 download)

DOWNLOAD NOW!


Book Synopsis Geometry of Complex Numbers by : Hans Schwerdtfeger

Download or read book Geometry of Complex Numbers written by Hans Schwerdtfeger and published by Courier Corporation. This book was released on 2012-05-23 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: Illuminating, widely praised book on analytic geometry of circles, the Moebius transformation, and 2-dimensional non-Euclidean geometries.

Number, Shape, & Symmetry

Download Number, Shape, & Symmetry PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1466554649
Total Pages : 446 pages
Book Rating : 4.4/5 (665 download)

DOWNLOAD NOW!


Book Synopsis Number, Shape, & Symmetry by : Diane L. Herrmann

Download or read book Number, Shape, & Symmetry written by Diane L. Herrmann and published by CRC Press. This book was released on 2012-10-18 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: Through a careful treatment of number theory and geometry, Number, Shape, & Symmetry: An Introduction to Number Theory, Geometry, and Group Theory helps readers understand serious mathematical ideas and proofs. Classroom-tested, the book draws on the authors’ successful work with undergraduate students at the University of Chicago, seventh to tenth grade mathematically talented students in the University of Chicago’s Young Scholars Program, and elementary public school teachers in the Seminars for Endorsement in Science and Mathematics Education (SESAME). The first half of the book focuses on number theory, beginning with the rules of arithmetic (axioms for the integers). The authors then present all the basic ideas and applications of divisibility, primes, and modular arithmetic. They also introduce the abstract notion of a group and include numerous examples. The final topics on number theory consist of rational numbers, real numbers, and ideas about infinity. Moving on to geometry, the text covers polygons and polyhedra, including the construction of regular polygons and regular polyhedra. It studies tessellation by looking at patterns in the plane, especially those made by regular polygons or sets of regular polygons. The text also determines the symmetry groups of these figures and patterns, demonstrating how groups arise in both geometry and number theory. The book is suitable for pre-service or in-service training for elementary school teachers, general education mathematics or math for liberal arts undergraduate-level courses, and enrichment activities for high school students or math clubs.

How Mathematics Happened

Download How Mathematics Happened PDF Online Free

Author :
Publisher : Prometheus Books
ISBN 13 : 1615921761
Total Pages : 316 pages
Book Rating : 4.6/5 (159 download)

DOWNLOAD NOW!


Book Synopsis How Mathematics Happened by : Peter S. Rudman

Download or read book How Mathematics Happened written by Peter S. Rudman and published by Prometheus Books. This book was released on 2009-12-30 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this fascinating discussion of ancient mathematics, author Peter Rudman does not just chronicle the archeological record of what mathematics was done; he digs deeper into the more important question of why it was done in a particular way. Why did the Egyptians use a bizarre method of expressing fractions? Why did the Babylonians use an awkward number system based on multiples of 60? Rudman answers such intriguing questions, arguing that some mathematical thinking is universal and timeless. The similarity of the Babylonian and Mayan number systems, two cultures widely separated in time and space, illustrates the argument. He then traces the evolution of number systems from finger counting in hunter-gatherer cultures to pebble counting in herder-farmer cultures of the Nile and Tigris-Euphrates valleys, which defined the number systems that continued to be used even after the invention of writing. With separate chapters devoted to the remarkable Egyptian and Babylonian mathematics of the era from about 3500 to 2000 BCE, when all of the basic arithmetic operations and even quadratic algebra became doable, Rudman concludes his interpretation of the archeological record. Since some of the mathematics formerly credited to the Greeks is now known to be a prior Babylonian invention, Rudman adds a chapter that discusses the math used by Pythagoras, Eratosthenes, and Hippasus, which has Babylonian roots, illustrating the watershed difference in abstraction and rigor that the Greeks introduced. He also suggests that we might improve present-day teaching by taking note of how the Greeks taught math. Complete with sidebars offering recreational math brainteasers, this engrossing discussion of the evolution of mathematics will appeal to both scholars and lay readers with an interest in mathematics and its history.

Complex Numbers and Geometry

Download Complex Numbers and Geometry PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470451824
Total Pages : 204 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Complex Numbers and Geometry by : Liang-shin Hahn

Download or read book Complex Numbers and Geometry written by Liang-shin Hahn and published by American Mathematical Soc.. This book was released on 2019-12-26 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this book is to demonstrate that complex numbers and geometry can be blended together beautifully. This results in easy proofs and natural generalizations of many theorems in plane geometry, such as the Napoleon theorem, the Ptolemy-Euler theorem, the Simson theorem, and the Morley theorem. The book is self-contained—no background in complex numbers is assumed—and can be covered at a leisurely pace in a one-semester course. Many of the chapters can be read independently. Over 100 exercises are included. The book would be suitable as a text for a geometry course, or for a problem solving seminar, or as enrichment for the student who wants to know more.

Prime Numbers and the Riemann Hypothesis

Download Prime Numbers and the Riemann Hypothesis PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107101921
Total Pages : 155 pages
Book Rating : 4.1/5 (71 download)

DOWNLOAD NOW!


Book Synopsis Prime Numbers and the Riemann Hypothesis by : Barry Mazur

Download or read book Prime Numbers and the Riemann Hypothesis written by Barry Mazur and published by Cambridge University Press. This book was released on 2016-04-11 with total page 155 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces prime numbers and explains the famous unsolved Riemann hypothesis.

The Prime Number Theorem

Download The Prime Number Theorem PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521891103
Total Pages : 266 pages
Book Rating : 4.8/5 (911 download)

DOWNLOAD NOW!


Book Synopsis The Prime Number Theorem by : G. J. O. Jameson

Download or read book The Prime Number Theorem written by G. J. O. Jameson and published by Cambridge University Press. This book was released on 2003-04-17 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: At first glance the prime numbers appear to be distributed in a very irregular way amongst the integers, but it is possible to produce a simple formula that tells us (in an approximate but well defined sense) how many primes we can expect to find that are less than any integer we might choose. The prime number theorem tells us what this formula is and it is indisputably one of the great classical theorems of mathematics. This textbook gives an introduction to the prime number theorem suitable for advanced undergraduates and beginning graduate students. The author's aim is to show the reader how the tools of analysis can be used in number theory to attack a 'real' problem, and it is based on his own experiences of teaching this material.

The Book of Prime Number Records

Download The Book of Prime Number Records PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1468499386
Total Pages : 492 pages
Book Rating : 4.4/5 (684 download)

DOWNLOAD NOW!


Book Synopsis The Book of Prime Number Records by : Paulo Ribenboim

Download or read book The Book of Prime Number Records written by Paulo Ribenboim and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 492 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text originated as a lecture delivered November 20, 1984, at Queen's University, in the undergraduate colloquium series established to honour Professors A. J. Coleman and H. W. Ellis and to acknowledge their long-lasting interest in the quality of teaching undergraduate students. In another colloquium lecture, my colleague Morris Orzech, who had consulted the latest edition of the Guinness Book oj Records, reminded me very gently that the most "innumerate" people of the world are of a certain tribe in Mato Grosso, Brazil. They do not even have a word to express the number "two" or the concept of plurality. "Yes Morris, I'm from Brazil, but my book will contain numbers different from 'one.' " He added that the most boring 800-page book is by two Japanese mathematicians (whom I'll not name), and consists of about 16 million digits of the number 11. "I assure you Morris, that in spite of the beauty of the apparent randomness of the decimal digits of 11, I'll be sure that my text will also include some words." Acknowledgment. The manuscript of this book was prepared on the word processor by Linda Nuttall. I wish to express my appreciation for the great care, speed, and competence of her work. Paulo Ribenboim CONTENTS Preface vii Guiding the Reader xiii Index of Notations xv Introduction Chapter 1. How Many Prime Numbers Are There? 3 I. Euclid's Proof 3 II.

An Introduction to the Geometry of Numbers

Download An Introduction to the Geometry of Numbers PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642620353
Total Pages : 357 pages
Book Rating : 4.6/5 (426 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to the Geometry of Numbers by : J.W.S. Cassels

Download or read book An Introduction to the Geometry of Numbers written by J.W.S. Cassels and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the reviews: "A well-written, very thorough account ... Among the topics are lattices, reduction, Minkowskis Theorem, distance functions, packings, and automorphs; some applications to number theory; excellent bibliographical references." The American Mathematical Monthly

Disquisitiones Arithmeticae

Download Disquisitiones Arithmeticae PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 1493975609
Total Pages : 491 pages
Book Rating : 4.4/5 (939 download)

DOWNLOAD NOW!


Book Synopsis Disquisitiones Arithmeticae by : Carl Friedrich Gauss

Download or read book Disquisitiones Arithmeticae written by Carl Friedrich Gauss and published by Springer. This book was released on 2018-02-07 with total page 491 pages. Available in PDF, EPUB and Kindle. Book excerpt: Carl Friedrich Gauss’s textbook, Disquisitiones arithmeticae, published in 1801 (Latin), remains to this day a true masterpiece of mathematical examination. .

Elementary Number Theory: Primes, Congruences, and Secrets

Download Elementary Number Theory: Primes, Congruences, and Secrets PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387855254
Total Pages : 173 pages
Book Rating : 4.3/5 (878 download)

DOWNLOAD NOW!


Book Synopsis Elementary Number Theory: Primes, Congruences, and Secrets by : William Stein

Download or read book Elementary Number Theory: Primes, Congruences, and Secrets written by William Stein and published by Springer Science & Business Media. This book was released on 2008-10-28 with total page 173 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a book about prime numbers, congruences, secret messages, and elliptic curves that you can read cover to cover. It grew out of undergr- uate courses that the author taught at Harvard, UC San Diego, and the University of Washington. The systematic study of number theory was initiated around 300B. C. when Euclid proved that there are in?nitely many prime numbers, and also cleverly deduced the fundamental theorem of arithmetic, which asserts that every positive integer factors uniquely as a product of primes. Over a thousand years later (around 972A. D. ) Arab mathematicians formulated the congruent number problem that asks for a way to decide whether or not a given positive integer n is the area of a right triangle, all three of whose sides are rational numbers. Then another thousand years later (in 1976), Di?e and Hellman introduced the ?rst ever public-key cryptosystem, which enabled two people to communicate secretely over a public communications channel with no predetermined secret; this invention and the ones that followed it revolutionized the world of digital communication. In the 1980s and 1990s, elliptic curves revolutionized number theory, providing striking new insights into the congruent number problem, primality testing, publ- key cryptography, attacks on public-key systems, and playing a central role in Andrew Wiles’ resolution of Fermat’s Last Theorem.

Classical Topics in Discrete Geometry

Download Classical Topics in Discrete Geometry PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1441906002
Total Pages : 171 pages
Book Rating : 4.4/5 (419 download)

DOWNLOAD NOW!


Book Synopsis Classical Topics in Discrete Geometry by : Károly Bezdek

Download or read book Classical Topics in Discrete Geometry written by Károly Bezdek and published by Springer Science & Business Media. This book was released on 2010-06-23 with total page 171 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geometry is a classical core part of mathematics which, with its birth, marked the beginning of the mathematical sciences. Thus, not surprisingly, geometry has played a key role in many important developments of mathematics in the past, as well as in present times. While focusing on modern mathematics, one has to emphasize the increasing role of discrete mathematics, or equivalently, the broad movement to establish discrete analogues of major components of mathematics. In this way, the works of a number of outstanding mathema- cians including H. S. M. Coxeter (Canada), C. A. Rogers (United Kingdom), and L. Fejes-T oth (Hungary) led to the new and fast developing eld called discrete geometry. One can brie y describe this branch of geometry as the study of discrete arrangements of geometric objects in Euclidean, as well as in non-Euclidean spaces. This, as a classical core part, also includes the theory of polytopes and tilings in addition to the theory of packing and covering. D- crete geometry is driven by problems often featuring a very clear visual and applied character. The solutions use a variety of methods of modern mat- matics, including convex and combinatorial geometry, coding theory, calculus of variations, di erential geometry, group theory, and topology, as well as geometric analysis and number theory.