Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Potential Theory And Right Processes
Download Potential Theory And Right Processes full books in PDF, epub, and Kindle. Read online Potential Theory And Right Processes ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Potential Theory and Right Processes by : Lucian Beznea
Download or read book Potential Theory and Right Processes written by Lucian Beznea and published by Springer Science & Business Media. This book was released on 2012-11-02 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: Further results are related to the subordination operators and measure perturbations. The subject matter is supplied with a probabilistic counterpart, involving the homogeneous random measures, multiplicative, left and co-natural additive functionals."--Jacket.
Book Synopsis Classical Potential Theory and Its Probabilistic Counterpart by : Joseph L. Doob
Download or read book Classical Potential Theory and Its Probabilistic Counterpart written by Joseph L. Doob and published by Springer Science & Business Media. This book was released on 2001-01-12 with total page 892 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the reviews: "Here is a momumental work by Doob, one of the masters, in which Part 1 develops the potential theory associated with Laplace's equation and the heat equation, and Part 2 develops those parts (martingales and Brownian motion) of stochastic process theory which are closely related to Part 1". --G.E.H. Reuter in Short Book Reviews (1985)
Book Synopsis Markov Processes and Potential Theory by :
Download or read book Markov Processes and Potential Theory written by and published by Academic Press. This book was released on 2011-08-29 with total page 325 pages. Available in PDF, EPUB and Kindle. Book excerpt: Markov Processes and Potential Theory
Book Synopsis Potential Analysis of Stable Processes and its Extensions by : Krzysztof Bogdan
Download or read book Potential Analysis of Stable Processes and its Extensions written by Krzysztof Bogdan and published by Springer Science & Business Media. This book was released on 2009-07-14 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stable Lévy processes and related stochastic processes play an important role in stochastic modelling in applied sciences, in particular in financial mathematics. This book is about the potential theory of stable stochastic processes. It also deals with related topics, such as the subordinate Brownian motions (including the relativistic process) and Feynman–Kac semigroups generated by certain Schrödinger operators. The authors focus on classes of stable and related processes that contain the Brownian motion as a special case. This is the first book devoted to the probabilistic potential theory of stable stochastic processes, and, from the analytical point of view, of the fractional Laplacian. The introduction is accessible to non-specialists and provides a general presentation of the fundamental objects of the theory. Besides recent and deep scientific results the book also provides a didactic approach to its topic, as all chapters have been tested on a wide audience, including young mathematicians at a CNRS/HARP Workshop, Angers 2006. The reader will gain insight into the modern theory of stable and related processes and their potential analysis with a theoretical motivation for the study of their fine properties.
Book Synopsis Potential Theory by : Lester L. Helms
Download or read book Potential Theory written by Lester L. Helms and published by Springer Science & Business Media. This book was released on 2014-04-10 with total page 494 pages. Available in PDF, EPUB and Kindle. Book excerpt: Potential Theory presents a clear path from calculus to classical potential theory and beyond, with the aim of moving the reader into the area of mathematical research as quickly as possible. The subject matter is developed from first principles using only calculus. Commencing with the inverse square law for gravitational and electromagnetic forces and the divergence theorem, the author develops methods for constructing solutions of Laplace's equation on a region with prescribed values on the boundary of the region. The latter half of the book addresses more advanced material aimed at those with the background of a senior undergraduate or beginning graduate course in real analysis. Starting with solutions of the Dirichlet problem subject to mixed boundary conditions on the simplest of regions, methods of morphing such solutions onto solutions of Poisson's equation on more general regions are developed using diffeomorphisms and the Perron-Wiener-Brelot method, culminating in application to Brownian motion. In this new edition, many exercises have been added to reconnect the subject matter to the physical sciences. This book will undoubtedly be useful to graduate students and researchers in mathematics, physics and engineering.
Book Synopsis Classical Potential Theory and Its Probabilistic Counterpart by : J. L. Doob
Download or read book Classical Potential Theory and Its Probabilistic Counterpart written by J. L. Doob and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 865 pages. Available in PDF, EPUB and Kindle. Book excerpt: Potential theory and certain aspects of probability theory are intimately related, perhaps most obviously in that the transition function determining a Markov process can be used to define the Green function of a potential theory. Thus it is possible to define and develop many potential theoretic concepts probabilistically, a procedure potential theorists observe withjaun diced eyes in view of the fact that now as in the past their subject provides the motivation for much of Markov process theory. However that may be it is clear that certain concepts in potential theory correspond closely to concepts in probability theory, specifically to concepts in martingale theory. For example, superharmonic functions correspond to supermartingales. More specifically: the Fatou type boundary limit theorems in potential theory correspond to supermartingale convergence theorems; the limit properties of monotone sequences of superharmonic functions correspond surprisingly closely to limit properties of monotone sequences of super martingales; certain positive superharmonic functions [supermartingales] are called "potentials," have associated measures in their respective theories and are subject to domination principles (inequalities) involving the supports of those measures; in each theory there is a reduction operation whose properties are the same in the two theories and these reductions induce sweeping (balayage) of the measures associated with potentials, and so on.
Book Synopsis Foundations of Potential Theory by : Oliver Dimon Kellogg
Download or read book Foundations of Potential Theory written by Oliver Dimon Kellogg and published by Courier Corporation. This book was released on 1953-01-01 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to fundamentals of potential functions covers the force of gravity, fields of force, potentials, harmonic functions, electric images and Green's function, sequences of harmonic functions, fundamental existence theorems, the logarithmic potential, and much more. Detailed proofs rigorously worked out. 1929 edition.
Book Synopsis Potential Theory on Locally Compact Abelian Groups by : C. van den Berg
Download or read book Potential Theory on Locally Compact Abelian Groups written by C. van den Berg and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 205 pages. Available in PDF, EPUB and Kindle. Book excerpt: Classical potential theory can be roughly characterized as the study of Newtonian potentials and the Laplace operator on the Euclidean space JR3. It was discovered around 1930 that there is a profound connection between classical potential 3 theory and the theory of Brownian motion in JR . The Brownian motion is determined by its semigroup of transition probabilities, the Brownian semigroup, and the connection between classical potential theory and the theory of Brownian motion can be described analytically in the following way: The Laplace operator is the infinitesimal generator for the Brownian semigroup and the Newtonian potential kernel is the" integral" of the Brownian semigroup with respect to time. This connection between classical potential theory and the theory of Brownian motion led Hunt (cf. Hunt [2]) to consider general "potential theories" defined in terms of certain stochastic processes or equivalently in terms of certain semi groups of operators on spaces of functions. The purpose of the present exposition is to study such general potential theories where the following aspects of classical potential theory are preserved: (i) The theory is defined on a locally compact abelian group. (ii) The theory is translation invariant in the sense that any translate of a potential or a harmonic function is again a potential, respectively a harmonic function; this property of classical potential theory can also be expressed by saying that the Laplace operator is a differential operator with constant co efficients.
Book Synopsis Complex Analysis and Potential Theory by : Andre Boivin
Download or read book Complex Analysis and Potential Theory written by Andre Boivin and published by American Mathematical Soc.. This book was released on 2012 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the proceedings volume of an international conference entitled Complex Analysis and Potential Theory, which was held to honor the important contributions of two influential analysts, Kohur N. GowriSankaran and Paul M. Gauthier, in June 2011 at the Centre de Recherches Mathematiques (CRM) in Montreal. More than fifty mathematicians from fifteen countries participated in the conference. The twenty-four surveys and research articles contained in this book are based on the lectures given by some of the most established specialists in the fields. They reflect the wide breadth of research interests of the two honorees: from potential theory on trees to approximation on Riemann surfaces, from universality to inner and outer functions and the disc algebra, from branching processes to harmonic extension and capacities, from harmonic mappings and the Harnack principle to integration formulae in $\mathbb {C}^n$ and the Hartogs phenomenon, from fine harmonicity and plurisubharmonic functions to the binomial identity and the Riemann hypothesis, and more. This volume will be a valuable resource for specialists, young researchers, and graduate students from both fields, complex analysis and potential theory. It will foster further cooperation and the exchange of ideas and techniques to find new research perspectives.
Book Synopsis Potential Theory by : Jürgen Bliedtner
Download or read book Potential Theory written by Jürgen Bliedtner and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: During the last thirty years potential theory has undergone a rapid development, much of which can still only be found in the original papers. This book deals with one part of this development, and has two aims. The first is to give a comprehensive account of the close connection between analytic and probabilistic potential theory with the notion of a balayage space appearing as a natural link. The second aim is to demonstrate the fundamental importance of this concept by using it to give a straight presentation of balayage theory which in turn is then applied to the Dirichlet problem. We have considered it to be beyond the scope of this book to treat further topics such as duality, ideal boundary and integral representation, energy and Dirichlet forms. The subject matter of this book originates in the relation between classical potential theory and the theory of Brownian motion. Both theories are linked with the Laplace operator. However, the deep connection between these two theories was first revealed in the papers of S. KAKUTANI [1], [2], [3], M. KAC [1] and J. L. DO DB [2] during the period 1944-54: This can be expressed by the·fact that the harmonic measures which occur in the solution of the Dirichlet problem are hitting distri butions for Brownian motion or, equivalently, that the positive hyperharmonic func tions for the Laplace equation are the excessive functions of the Brownian semi group.
Book Synopsis Classical Potential Theory by : David H. Armitage
Download or read book Classical Potential Theory written by David H. Armitage and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 343 pages. Available in PDF, EPUB and Kindle. Book excerpt: A long-awaited, updated introductory text by the world leaders in potential theory. This essential reference work covers all aspects of this major field of mathematical research, from basic theory and exercises to more advanced topological ideas. The largely self-contained presentation makes it basically accessible to graduate students.
Book Synopsis Potential Theory in Applied Geophysics by : Kalyan Kumar Roy
Download or read book Potential Theory in Applied Geophysics written by Kalyan Kumar Roy and published by Springer Science & Business Media. This book was released on 2007-11-15 with total page 661 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the principles of gravitational, magnetic, electrostatic, direct current electrical and electromagnetic fields, with detailed solutions of Laplace and electromagnetic wave equations by the method of separation of variables. Discussion includes behaviours of the scalar and vector potential and the nature of the solutions of these boundary value problems, along with the use of complex variables and conformal transformation, Green's theorem, Green's formula and Green's functions.
Download or read book Potential Theory written by Josef Kral and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: Within the tradition of meetings devoted to potential theory, a conference on potential theory took place in Prague on 19-24, July 1987. The Conference was organized by the Faculty of Mathematics and Physics, Charles University, with the collaboration of the Institute of Mathematics, Czechoslovak Academy of Sciences, the Department of Mathematics, Czech University of Technology, the Union of Czechoslovak Mathematicians and Physicists, the Czechoslovak Scientific and Technical Society, and supported by IMU. During the Conference, 69 scientific communications from different branches of potential theory were presented; the majority of them are in cluded in the present volume. (Papers based on survey lectures delivered at the Conference, its program as well as a collection of problems from potential theory will appear in a special volume of the Lecture Notes Series published by Springer-Verlag). Topics of these communications truly reflect the vast scope of contemporary potential theory. Some contributions deal with applications in physics and engineering, other concern potential theoretic aspects of function theory and complex analysis. Numerous papers are devoted to the theory of partial differential equations. Included are also many articles on axiomatic and abstract potential theory with its relations to probability theory. The present volume may thus be of intrest to mathematicians speciali zing in the above-mentioned fields and also to everybody interested in the present state of potential theory as a whole.
Book Synopsis Function Spaces and Potential Theory by : David R. Adams
Download or read book Function Spaces and Potential Theory written by David R. Adams and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: "..carefully and thoughtfully written and prepared with, in my opinion, just the right amount of detail included...will certainly be a primary source that I shall turn to." Proceedings of the Edinburgh Mathematical Society
Book Synopsis Markov Processes: Ray Processes and Right Processes by : R.K. Getoor
Download or read book Markov Processes: Ray Processes and Right Processes written by R.K. Getoor and published by Springer. This book was released on 2006-11-15 with total page 124 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis General Theory of Markov Processes by :
Download or read book General Theory of Markov Processes written by and published by Academic Press. This book was released on 1988-11-01 with total page 439 pages. Available in PDF, EPUB and Kindle. Book excerpt: General Theory of Markov Processes
Book Synopsis Symmetric Markov Processes, Time Change, and Boundary Theory (LMS-35) by : Zhen-Qing Chen
Download or read book Symmetric Markov Processes, Time Change, and Boundary Theory (LMS-35) written by Zhen-Qing Chen and published by Princeton University Press. This book was released on 2012 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a comprehensive and self-contained introduction to the theory of symmetric Markov processes and symmetric quasi-regular Dirichlet forms. In a detailed and accessible manner, Zhen-Qing Chen and Masatoshi Fukushima cover the essential elements and applications of the theory of symmetric Markov processes, including recurrence/transience criteria, probabilistic potential theory, additive functional theory, and time change theory. The authors develop the theory in a general framework of symmetric quasi-regular Dirichlet forms in a unified manner with that of regular Dirichlet forms, emphasizing the role of extended Dirichlet spaces and the rich interplay between the probabilistic and analytic aspects of the theory. Chen and Fukushima then address the latest advances in the theory, presented here for the first time in any book. Topics include the characterization of time-changed Markov processes in terms of Douglas integrals and a systematic account of reflected Dirichlet spaces, and the important roles such advances play in the boundary theory of symmetric Markov processes. This volume is an ideal resource for researchers and practitioners, and can also serve as a textbook for advanced graduate students. It includes examples, appendixes, and exercises with solutions.