Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Points Of Finite Order On Elliptic Curves
Download Points Of Finite Order On Elliptic Curves full books in PDF, epub, and Kindle. Read online Points Of Finite Order On Elliptic Curves ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Rational Points on Elliptic Curves by : Joseph H. Silverman
Download or read book Rational Points on Elliptic Curves written by Joseph H. Silverman and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of elliptic curves involves a blend of algebra, geometry, analysis, and number theory. This book stresses this interplay as it develops the basic theory, providing an opportunity for readers to appreciate the unity of modern mathematics. The book’s accessibility, the informal writing style, and a wealth of exercises make it an ideal introduction for those interested in learning about Diophantine equations and arithmetic geometry.
Book Synopsis The Arithmetic of Elliptic Curves by : Joseph H. Silverman
Download or read book The Arithmetic of Elliptic Curves written by Joseph H. Silverman and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of elliptic curves is distinguished by its long history and by the diversity of the methods that have been used in its study. This book treats the arithmetic approach in its modern formulation, through the use of basic algebraic number theory and algebraic geometry. Following a brief discussion of the necessary algebro-geometric results, the book proceeds with an exposition of the geometry and the formal group of elliptic curves, elliptic curves over finite fields, the complex numbers, local fields, and global fields. Final chapters deal with integral and rational points, including Siegels theorem and explicit computations for the curve Y = X + DX, while three appendices conclude the whole: Elliptic Curves in Characteristics 2 and 3, Group Cohomology, and an overview of more advanced topics.
Book Synopsis Rational Points on Modular Elliptic Curves by : Henri Darmon
Download or read book Rational Points on Modular Elliptic Curves written by Henri Darmon and published by American Mathematical Soc.. This book was released on 2004 with total page 146 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book surveys some recent developments in the arithmetic of modular elliptic curves. It places a special emphasis on the construction of rational points on elliptic curves, the Birch and Swinnerton-Dyer conjecture, and the crucial role played by modularity in shedding light on these two closely related issues. The main theme of the book is the theory of complex multiplication, Heegner points, and some conjectural variants. The first three chapters introduce the background and prerequisites: elliptic curves, modular forms and the Shimura-Taniyama-Weil conjecture, complex multiplication and the Heegner point construction. The next three chapters introduce variants of modular parametrizations in which modular curves are replaced by Shimura curves attached to certain indefinite quaternion algebras. The main new contributions are found in Chapters 7-9, which survey the author's attempts to extend the theory of Heegner points and complex multiplication to situations where the base field is not a CM field. Chapter 10 explains the proof of Kolyvagin's theorem, which relates Heegner points to the arithmetic of elliptic curves and leads to the best evidence so far for the Birch and Swinnerton-Dyer conjecture.
Book Synopsis Elliptic Curves by : Lawrence C. Washington
Download or read book Elliptic Curves written by Lawrence C. Washington and published by CRC Press. This book was released on 2008-04-03 with total page 533 pages. Available in PDF, EPUB and Kindle. Book excerpt: Like its bestselling predecessor, Elliptic Curves: Number Theory and Cryptography, Second Edition develops the theory of elliptic curves to provide a basis for both number theoretic and cryptographic applications. With additional exercises, this edition offers more comprehensive coverage of the fundamental theory, techniques, and application
Download or read book Elliptic Curves written by S. Lang and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: It is possible to write endlessly on elliptic curves. (This is not a threat.) We deal here with diophantine problems, and we lay the foundations, especially for the theory of integral points. We review briefly the analytic theory of the Weierstrass function, and then deal with the arithmetic aspects of the addition formula, over complete fields and over number fields, giving rise to the theory of the height and its quadraticity. We apply this to integral points, covering the inequalities of diophantine approximation both on the multiplicative group and on the elliptic curve directly. Thus the book splits naturally in two parts. The first part deals with the ordinary arithmetic of the elliptic curve: The transcendental parametrization, the p-adic parametrization, points of finite order and the group of rational points, and the reduction of certain diophantine problems by the theory of heights to diophantine inequalities involving logarithms. The second part deals with the proofs of selected inequalities, at least strong enough to obtain the finiteness of integral points.
Book Synopsis Introduction to Elliptic Curves and Modular Forms by : Neal I. Koblitz
Download or read book Introduction to Elliptic Curves and Modular Forms written by Neal I. Koblitz and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of elliptic curves and modular forms provides a fruitful meeting ground for such diverse areas as number theory, complex analysis, algebraic geometry, and representation theory. This book starts out with a problem from elementary number theory and proceeds to lead its reader into the modern theory, covering such topics as the Hasse-Weil L-function and the conjecture of Birch and Swinnerton-Dyer. This new edition details the current state of knowledge of elliptic curves.
Book Synopsis Elliptic Curves (Second Edition) by : James S Milne
Download or read book Elliptic Curves (Second Edition) written by James S Milne and published by World Scientific. This book was released on 2020-08-20 with total page 319 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book uses the beautiful theory of elliptic curves to introduce the reader to some of the deeper aspects of number theory. It assumes only a knowledge of the basic algebra, complex analysis, and topology usually taught in first-year graduate courses.An elliptic curve is a plane curve defined by a cubic polynomial. Although the problem of finding the rational points on an elliptic curve has fascinated mathematicians since ancient times, it was not until 1922 that Mordell proved that the points form a finitely generated group. There is still no proven algorithm for finding the rank of the group, but in one of the earliest important applications of computers to mathematics, Birch and Swinnerton-Dyer discovered a relation between the rank and the numbers of points on the curve computed modulo a prime. Chapter IV of the book proves Mordell's theorem and explains the conjecture of Birch and Swinnerton-Dyer.Every elliptic curve over the rational numbers has an L-series attached to it.Hasse conjectured that this L-series satisfies a functional equation, and in 1955 Taniyama suggested that Hasse's conjecture could be proved by showing that the L-series arises from a modular form. This was shown to be correct by Wiles (and others) in the 1990s, and, as a consequence, one obtains a proof of Fermat's Last Theorem. Chapter V of the book is devoted to explaining this work.The first three chapters develop the basic theory of elliptic curves.For this edition, the text has been completely revised and updated.
Download or read book Elliptic Tales written by Avner Ash and published by Princeton University Press. This book was released on 2012 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: Describes the latest developments in number theory by looking at the Birch and Swinnerton-Dyer Conjecture.
Book Synopsis Abelian l-Adic Representations and Elliptic Curves by : Jean-Pierre Serre
Download or read book Abelian l-Adic Representations and Elliptic Curves written by Jean-Pierre Serre and published by CRC Press. This book was released on 1997-11-15 with total page 203 pages. Available in PDF, EPUB and Kindle. Book excerpt: This classic book contains an introduction to systems of l-adic representations, a topic of great importance in number theory and algebraic geometry, as reflected by the spectacular recent developments on the Taniyama-Weil conjecture and Fermat's Last Theorem. The initial chapters are devoted to the Abelian case (complex multiplication), where one
Book Synopsis Elliptic Curve Public Key Cryptosystems by : Alfred J. Menezes
Download or read book Elliptic Curve Public Key Cryptosystems written by Alfred J. Menezes and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 139 pages. Available in PDF, EPUB and Kindle. Book excerpt: Elliptic curves have been intensively studied in algebraic geometry and number theory. In recent years they have been used in devising efficient algorithms for factoring integers and primality proving, and in the construction of public key cryptosystems. Elliptic Curve Public Key Cryptosystems provides an up-to-date and self-contained treatment of elliptic curve-based public key cryptology. Elliptic curve cryptosystems potentially provide equivalent security to the existing public key schemes, but with shorter key lengths. Having short key lengths means smaller bandwidth and memory requirements and can be a crucial factor in some applications, for example the design of smart card systems. The book examines various issues which arise in the secure and efficient implementation of elliptic curve systems. Elliptic Curve Public Key Cryptosystems is a valuable reference resource for researchers in academia, government and industry who are concerned with issues of data security. Because of the comprehensive treatment, the book is also suitable for use as a text for advanced courses on the subject.
Author :John William Scott Cassels Publisher :Cambridge University Press ISBN 13 :9780521425308 Total Pages :148 pages Book Rating :4.4/5 (253 download)
Book Synopsis LMSST: 24 Lectures on Elliptic Curves by : John William Scott Cassels
Download or read book LMSST: 24 Lectures on Elliptic Curves written by John William Scott Cassels and published by Cambridge University Press. This book was released on 1991-11-21 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: A self-contained introductory text for beginning graduate students that is contemporary in approach without ignoring historical matters.
Download or read book Elliptic Curves written by James S Milne and published by . This book was released on 2020 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book uses the beautiful theory of elliptic curves to introduce the reader to some of the deeper aspects of number theory. It assumes only a knowledge of the basic algebra, complex analysis, and topology usually taught in first-year graduate courses. An elliptic curve is a plane curve defined by a cubic polynomial. Although the problem of finding the rational points on an elliptic curve has fascinated mathematicians since ancient times, it was not until 1922 that Mordell proved that the points form a finitely generated group. There is still no proven algorithm for finding the rank of the group, but in one of the earliest important applications of computers to mathematics, Birch and Swinnerton-Dyer discovered a relation between the rank and the numbers of points on the curve computed modulo a prime. Chapter IV of the book proves Mordell's theorem and explains the conjecture of Birch and Swinnerton-Dyer. Every elliptic curve over the rational numbers has an L-series attached to it.Hasse conjectured that this L-series satisfies a functional equation, and in 1955 Taniyama suggested that Hasse's conjecture could be proved by showing that the L-series arises from a modular form. This was shown to be correct by Wiles (and others) in the 1990s, and, as a consequence, one obtains a proof of Fermat's Last Theorem. Chapter V of the book is devoted to explaining this work. The first three chapters develop the basic theory of elliptic curves. For this edition, the text has been completely revised and updated.
Book Synopsis Basic Number Theory. by : Andre Weil
Download or read book Basic Number Theory. written by Andre Weil and published by Springer Science & Business Media. This book was released on 2013-12-14 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: Itpzf}JlOV, li~oxov uoq>ZUJlCJ. 7:WV Al(JX., llpoj1. AE(Jj1. The first part of this volume is based on a course taught at Princeton University in 1961-62; at that time, an excellent set ofnotes was prepared by David Cantor, and it was originally my intention to make these notes available to the mathematical public with only quite minor changes. Then, among some old papers of mine, I accidentally came across a long-forgotten manuscript by ChevaIley, of pre-war vintage (forgotten, that is to say, both by me and by its author) which, to my taste at least, seemed to have aged very welt It contained abrief but essentially com plete account of the main features of c1assfield theory, both local and global; and it soon became obvious that the usefulness of the intended volume would be greatly enhanced if I inc1uded such a treatment of this topic. It had to be expanded, in accordance with my own plans, but its outline could be preserved without much change. In fact, I have adhered to it rather c10sely at some critical points.
Download or read book Elliptic Curves written by Henry McKean and published by Cambridge University Press. This book was released on 1999-08-13 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introductory 1997 account in the style of the original discoverers, treating the fundamental themes even-handedly.
Book Synopsis Recurrence Sequences by : Graham Everest
Download or read book Recurrence Sequences written by Graham Everest and published by American Mathematical Soc.. This book was released on 2015-09-03 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recurrence sequences are of great intrinsic interest and have been a central part of number theory for many years. Moreover, these sequences appear almost everywhere in mathematics and computer science. This book surveys the modern theory of linear recurrence sequences and their generalizations. Particular emphasis is placed on the dramatic impact that sophisticated methods from Diophantine analysis and transcendence theory have had on the subject. Related work on bilinear recurrences and an emerging connection between recurrences and graph theory are covered. Applications and links to other areas of mathematics are described, including combinatorics, dynamical systems and cryptography, and computer science. The book is suitable for researchers interested in number theory, combinatorics, and graph theory.
Book Synopsis Elliptic Curves and Their Applications to Cryptography by : Andreas Enge
Download or read book Elliptic Curves and Their Applications to Cryptography written by Andreas Enge and published by Springer Science & Business Media. This book was released on 1999-08-31 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since their invention in the late seventies, public key cryptosystems have become an indispensable asset in establishing private and secure electronic communication, and this need, given the tremendous growth of the Internet, is likely to continue growing. Elliptic curve cryptosystems represent the state of the art for such systems. Elliptic Curves and Their Applications to Cryptography: An Introduction provides a comprehensive and self-contained introduction to elliptic curves and how they are employed to secure public key cryptosystems. Even though the elegant mathematical theory underlying cryptosystems is considerably more involved than for other systems, this text requires the reader to have only an elementary knowledge of basic algebra. The text nevertheless leads to problems at the forefront of current research, featuring chapters on point counting algorithms and security issues. The Adopted unifying approach treats with equal care elliptic curves over fields of even characteristic, which are especially suited for hardware implementations, and curves over fields of odd characteristic, which have traditionally received more attention. Elliptic Curves and Their Applications: An Introduction has been used successfully for teaching advanced undergraduate courses. It will be of greatest interest to mathematicians, computer scientists, and engineers who are curious about elliptic curve cryptography in practice, without losing the beauty of the underlying mathematics.
Book Synopsis Mathematics of Public Key Cryptography by : Steven D. Galbraith
Download or read book Mathematics of Public Key Cryptography written by Steven D. Galbraith and published by Cambridge University Press. This book was released on 2012-03-15 with total page 631 pages. Available in PDF, EPUB and Kindle. Book excerpt: This advanced graduate textbook gives an authoritative and insightful description of the major ideas and techniques of public key cryptography.