Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Plastic Behavior Of Polycrytalline Thin Films Discrete Dislocation Study
Download Plastic Behavior Of Polycrytalline Thin Films Discrete Dislocation Study full books in PDF, epub, and Kindle. Read online Plastic Behavior Of Polycrytalline Thin Films Discrete Dislocation Study ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis The Investigation of Plastic Behavior by Discrete Dislocation Dynamics for Single Crystal Pillar at Submicron Scale by : Yinan Cui
Download or read book The Investigation of Plastic Behavior by Discrete Dislocation Dynamics for Single Crystal Pillar at Submicron Scale written by Yinan Cui and published by Springer. This book was released on 2016-10-26 with total page 141 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis transports you to a wonderful and fascinating small-scale world and tells you the origin of several new phenomena. The investigative tool is the improved discrete dislocation-based multi-scale approaches, bridging the continuum modeling and atomistic simulation. Mechanism-based theoretical models are put forward to conveniently predict the mechanical responses and defect evolution. The findings presented in this thesis yield valuable new guidelines for microdevice design, reliability analysis and defect tuning.
Book Synopsis Dislocation Mechanism-Based Crystal Plasticity by : Zhuo Zhuang
Download or read book Dislocation Mechanism-Based Crystal Plasticity written by Zhuo Zhuang and published by Academic Press. This book was released on 2019-04-12 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dislocation Based Crystal Plasticity: Theory and Computation at Micron and Submicron Scale provides a comprehensive introduction to the continuum and discreteness dislocation mechanism-based theories and computational methods of crystal plasticity at the micron and submicron scale. Sections cover the fundamental concept of conventional crystal plasticity theory at the macro-scale without size effect, strain gradient crystal plasticity theory based on Taylar law dislocation, mechanism at the mesoscale, phase-field theory of crystal plasticity, computation at the submicron scale, including single crystal plasticity theory, and the discrete-continuous model of crystal plasticity with three-dimensional discrete dislocation dynamics coupling finite element method (DDD-FEM). Three kinds of plastic deformation mechanisms for submicron pillars are systematically presented. Further sections discuss dislocation nucleation and starvation at high strain rate and temperature effect for dislocation annihilation mechanism. - Covers dislocation mechanism-based crystal plasticity theory and computation at the micron and submicron scale - Presents crystal plasticity theory without size effect - Deals with the 3D discrete-continuous (3D DCM) theoretic and computational model of crystal plasticity with 3D discrete dislocation dynamics (3D DDD) coupling finite element method (FEM) - Includes discrete dislocation mechanism-based theory and computation at the submicron scale with single arm source, coating micropillar, lower cyclic loading pillars, and dislocation starvation at the submicron scale
Book Synopsis Continuum Scale Simulation of Engineering Materials by : Dierk Raabe
Download or read book Continuum Scale Simulation of Engineering Materials written by Dierk Raabe and published by John Wiley & Sons. This book was released on 2006-03-06 with total page 885 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book fills a gap by presenting our current knowledge and understanding of continuum-based concepts behind computational methods used for microstructure and process simulation of engineering materials above the atomic scale. The volume provides an excellent overview on the different methods, comparing the different methods in terms of their respective particular weaknesses and advantages. This trains readers to identify appropriate approaches to the new challenges that emerge every day in this exciting domain. Divided into three main parts, the first is a basic overview covering fundamental key methods in the field of continuum scale materials simulation. The second one then goes on to look at applications of these methods to the prediction of microstructures, dealing with explicit simulation examples, while the third part discusses example applications in the field of process simulation. By presenting a spectrum of different computational approaches to materials, the book aims to initiate the development of corresponding virtual laboratories in the industry in which these methods are exploited. As such, it addresses graduates and undergraduates, lecturers, materials scientists and engineers, physicists, biologists, chemists, mathematicians, and mechanical engineers.
Book Synopsis Dislocations, Mesoscale Simulations and Plastic Flow by : L. Kubin
Download or read book Dislocations, Mesoscale Simulations and Plastic Flow written by L. Kubin and published by Oxford University Press (UK). This book was released on 2013-04-18 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the past twenty years, new experimental approaches, improved models and progress in simulation techniques brought new insights into long-standing issues concerning dislocation-based plasticity in crystalline materials. Dislocation dynamics simulations are becoming accessible to a wide range of users. This book presents to students and researchers in materials science and mechanical engineering a comprehensive coverage of the physical body of knowledge on whichthey are based. This includes classical studies, which are too often ignored, recent experimental and theoretical advances, as well as a discussion of selected applications on various topics.
Book Synopsis Nano and Cell Mechanics by : Horacio D. Espinosa
Download or read book Nano and Cell Mechanics written by Horacio D. Espinosa and published by John Wiley & Sons. This book was released on 2012-12-12 with total page 519 pages. Available in PDF, EPUB and Kindle. Book excerpt: Research in nano and cell mechanics has received much attention from the scientific community as a result of society needs and government initiatives to accelerate developments in materials, manufacturing, electronics, medicine and healthcare, energy, and the environment. Engineers and scientists are currently engaging in increasingly complex scientific problems that require interdisciplinary approaches. In this regard, studies in this field draw from fundamentals in atomistic scale phenomena, biology, statistical and continuum mechanics, and multiscale modeling and experimentation. As a result, contributions in these areas are spread over a large number of specialized journals, which prompted the Editors to assemble this book. Nano and Cell Mechanics: Fundamentals and Frontiers brings together many of the new developments in the field for the first time, and covers fundamentals and frontiers in mechanics to accelerate developments in nano- and bio-technologies. Key features: • Provides an overview of recent advances in nano and cell mechanics. • Covers experimental, analytical, and computational tools used to investigate biological and nanoscale phenomena. • Covers fundamentals and frontiers in mechanics to accelerate developments in nano- and bio-technologies. • Presents multiscale-multiphysics modeling and experimentation techniques. • Examines applications in materials, manufacturing, electronics, medicine and healthcare. Nano and Cell Mechanics: Fundamentals and Frontiers is written by internationally recognized experts in theoretical and applied mechanics, applied physics, chemistry, and biology. It is an invaluable reference for graduate students of nano- and bio-technologies, researchers in academia and industry who are working in nano and cell mechanics, and practitioners who are interested in learning about the latest analysis tools. The book can also serve as a text for graduate courses in theoretical and applied mechanics, mechanical engineering, materials science, and applied physics.
Book Synopsis Applied Mechanics and Materials I by : Guang Fan Li
Download or read book Applied Mechanics and Materials I written by Guang Fan Li and published by Trans Tech Publications Ltd. This book was released on 2013-01-11 with total page 2871 pages. Available in PDF, EPUB and Kindle. Book excerpt: Selected, peer reviewed papers from the 2012 International Conference on Applied Mechanics and Materials (ICAMM 2012), November 24-25, 2012, Sanya, China
Book Synopsis Scientific and Technical Aerospace Reports by :
Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1995 with total page 692 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Multiscale Phenomena in Materials - Experiments and Modeling Related to Mechanical Behavior: Volume 779 by : Materials Research Society. Meeting
Download or read book Multiscale Phenomena in Materials - Experiments and Modeling Related to Mechanical Behavior: Volume 779 written by Materials Research Society. Meeting and published by . This book was released on 2003-09-05 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: The MRS Symposium Proceeding series is an internationally recognised reference suitable for researchers and practitioners. This 2003 volume focuses on experimentally validated multiscale modeling of ductile metals and alloys.
Book Synopsis Crystal Plasticity Finite Element Methods by : Franz Roters
Download or read book Crystal Plasticity Finite Element Methods written by Franz Roters and published by John Wiley & Sons. This book was released on 2011-08-04 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by the leading experts in computational materials science, this handy reference concisely reviews the most important aspects of plasticity modeling: constitutive laws, phase transformations, texture methods, continuum approaches and damage mechanisms. As a result, it provides the knowledge needed to avoid failures in critical systems udner mechanical load. With its various application examples to micro- and macrostructure mechanics, this is an invaluable resource for mechanical engineers as well as for researchers wanting to improve on this method and extend its outreach.
Download or read book Diffusion and Defect Data written by and published by . This book was released on 2004 with total page 766 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Defects and Diffusion in Metals by :
Download or read book Defects and Diffusion in Metals written by and published by . This book was released on 2004 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Gradient-Enhanced Continuum Plasticity by : George Z. Voyiadjis
Download or read book Gradient-Enhanced Continuum Plasticity written by George Z. Voyiadjis and published by Elsevier. This book was released on 2020-03-27 with total page 405 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gradient-Enhanced Continuum Plasticity provides an expansive review of gradient-enhanced continuum plasticity from the initial stage to current research trends in experimental, theoretical, computational and numerical investigations. Starting with an overview of continuum mechanics and classical plasticity, the book then delves into concise lessons covering basic principles and applications, such as outlining the use of the finite element method to solve problems with size effects, mesh sensitivity and high velocity impact loading. All major theories are explored, providing readers with a guide to understanding the various concepts of and differences between an array of gradient-enhanced continuum plasticity models. - Outlines the concepts of, and differences between, various gradient-enhanced continuum plasticity models - Provides guidance on problem-solving for size effects, mesh-sensitivity tests and thermo-mechanical coupling - Reviews experimental, numerical and theoretical issues in gradient-enhanced continuum plasticity - Describes micromechanical aspects from experimental observations
Download or read book Applied mechanics reviews written by and published by . This book was released on 1948 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Multiscale Materials Modeling for Nanomechanics by : Christopher R. Weinberger
Download or read book Multiscale Materials Modeling for Nanomechanics written by Christopher R. Weinberger and published by Springer. This book was released on 2016-08-30 with total page 554 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a unique combination of chapters that together provide a practical introduction to multiscale modeling applied to nanoscale materials mechanics. The goal of this book is to present a balanced treatment of both the theory of the methodology, as well as some practical aspects of conducting the simulations and models. The first half of the book covers some fundamental modeling and simulation techniques ranging from ab-inito methods to the continuum scale. Included in this set of methods are several different concurrent multiscale methods for bridging time and length scales applicable to mechanics at the nanoscale regime. The second half of the book presents a range of case studies from a varied selection of research groups focusing either on a the application of multiscale modeling to a specific nanomaterial, or novel analysis techniques aimed at exploring nanomechanics. Readers are also directed to helpful sites and other resources throughout the book where the simulation codes and methodologies discussed herein can be accessed. Emphasis on the practicality of the detailed techniques is especially felt in the latter half of the book, which is dedicated to specific examples to study nanomechanics and multiscale materials behavior. An instructive avenue for learning how to effectively apply these simulation tools to solve nanomechanics problems is to study previous endeavors. Therefore, each chapter is written by a unique team of experts who have used multiscale materials modeling to solve a practical nanomechanics problem. These chapters provide an extensive picture of the multiscale materials landscape from problem statement through the final results and outlook, providing readers with a roadmap for incorporating these techniques into their own research.
Book Synopsis Fundamental Aspects of Dislocation Interactions by : G. Kostorz
Download or read book Fundamental Aspects of Dislocation Interactions written by G. Kostorz and published by Elsevier. This book was released on 2013-09-03 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fundamental Aspects of Dislocation Interactions: Low-Energy Dislocation Structures III covers the papers presented at a European Research Conference on Plasticity of Materials-Fundamental Aspects of Dislocation Interactions: Low-Energy Dislocation Structures III, held on August 30-September 4, 1992 in Ascona, Switzerland. The book focuses on the processes, technologies, reactions, transformations, and approaches involved in dislocation interactions. The selection first offers information on work softening and Hall-Petch hardening in extruded mechanically alloyed alloys and dynamic origin of dislocation structures in deformed solids. Discussions focus on stress-strain behavior in relation to composition, structure, and annealing; comparison of stress-strain curves with work softening theory; sweeping and trapping mechanism; and model of dipolar wall structure formation. The text then ponders on plastic instabilities and their relation to fracture and dislocation and kink dynamics in f.c.c. metals studied by mechanical spectroscopy. The book takes a look at misfit dislocation generation mechanisms in heterostructures and evolution of dislocation structure on the interfaces associated with diffusionless phase transitions. Discussions focus on dislocation representation of a wall of elastic domains; equation of equilibrium of an elastic domain; transformation of dislocations; and theoretical and experimental background. The selection is a valuable reference for readers interested in dislocation interactions.
Book Synopsis Fracture Nanomechanics by : Takayuki Kitamura
Download or read book Fracture Nanomechanics written by Takayuki Kitamura and published by CRC Press. This book was released on 2016-01-06 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: Materials of micro-/nanometer dimensions have aroused remarkable interest, motivated by the diverse utility of unconventional mechanical and electronic properties distinguished from the bulk counterpart and various industrial applications such as electronic/optic devices and MEMS/NEMS. The size of their elements is now, ultimately, approaching nano
Book Synopsis Diffusion Processes in Advanced Technological Materials by : Devendra Gupta
Download or read book Diffusion Processes in Advanced Technological Materials written by Devendra Gupta and published by Springer Science & Business Media. This book was released on 2013-01-15 with total page 552 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new game book for understanding atoms at play aims to document diffusion processes and various other properties operative in advanced technological materials. Diffusion in functional organic chemicals, polymers, granular materials, complex oxides, metallic glasses, and quasi-crystals among other advanced materials is a highly interactive and synergic phenomenon. A large variety of atomic arrangements are possible. Each arrangement affects the performance of these advanced, polycrystalline multiphase materials used in photonics, MEMS, electronics, and other applications of current and developing interest. This book is written by pioneers in industry and academia for engineers, chemists, and physicists in industry and academia at the forefront of today's challenges in nanotechnology, surface science, materials science, and semiconductors.