Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Pipelines For Deep Contextual Patient Level Clinical Outcome Prediction
Download Pipelines For Deep Contextual Patient Level Clinical Outcome Prediction full books in PDF, epub, and Kindle. Read online Pipelines For Deep Contextual Patient Level Clinical Outcome Prediction ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author :National Academies of Sciences, Engineering, and Medicine Publisher :National Academies Press ISBN 13 :0309452961 Total Pages :583 pages Book Rating :4.3/5 (94 download)
Book Synopsis Communities in Action by : National Academies of Sciences, Engineering, and Medicine
Download or read book Communities in Action written by National Academies of Sciences, Engineering, and Medicine and published by National Academies Press. This book was released on 2017-04-27 with total page 583 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the United States, some populations suffer from far greater disparities in health than others. Those disparities are caused not only by fundamental differences in health status across segments of the population, but also because of inequities in factors that impact health status, so-called determinants of health. Only part of an individual's health status depends on his or her behavior and choice; community-wide problems like poverty, unemployment, poor education, inadequate housing, poor public transportation, interpersonal violence, and decaying neighborhoods also contribute to health inequities, as well as the historic and ongoing interplay of structures, policies, and norms that shape lives. When these factors are not optimal in a community, it does not mean they are intractable: such inequities can be mitigated by social policies that can shape health in powerful ways. Communities in Action: Pathways to Health Equity seeks to delineate the causes of and the solutions to health inequities in the United States. This report focuses on what communities can do to promote health equity, what actions are needed by the many and varied stakeholders that are part of communities or support them, as well as the root causes and structural barriers that need to be overcome.
Book Synopsis Optimization for Machine Learning by : Suvrit Sra
Download or read book Optimization for Machine Learning written by Suvrit Sra and published by MIT Press. This book was released on 2012 with total page 509 pages. Available in PDF, EPUB and Kindle. Book excerpt: An up-to-date account of the interplay between optimization and machine learning, accessible to students and researchers in both communities. The interplay between optimization and machine learning is one of the most important developments in modern computational science. Optimization formulations and methods are proving to be vital in designing algorithms to extract essential knowledge from huge volumes of data. Machine learning, however, is not simply a consumer of optimization technology but a rapidly evolving field that is itself generating new optimization ideas. This book captures the state of the art of the interaction between optimization and machine learning in a way that is accessible to researchers in both fields. Optimization approaches have enjoyed prominence in machine learning because of their wide applicability and attractive theoretical properties. The increasing complexity, size, and variety of today's machine learning models call for the reassessment of existing assumptions. This book starts the process of reassessment. It describes the resurgence in novel contexts of established frameworks such as first-order methods, stochastic approximations, convex relaxations, interior-point methods, and proximal methods. It also devotes attention to newer themes such as regularized optimization, robust optimization, gradient and subgradient methods, splitting techniques, and second-order methods. Many of these techniques draw inspiration from other fields, including operations research, theoretical computer science, and subfields of optimization. The book will enrich the ongoing cross-fertilization between the machine learning community and these other fields, and within the broader optimization community.
Book Synopsis Machine Learning in Clinical Neuroscience by : Victor E. Staartjes
Download or read book Machine Learning in Clinical Neuroscience written by Victor E. Staartjes and published by Springer Nature. This book was released on 2021-12-03 with total page 343 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book bridges the gap between data scientists and clinicians by introducing all relevant aspects of machine learning in an accessible way, and will certainly foster new and serendipitous applications of machine learning in the clinical neurosciences. Building from the ground up by communicating the foundational knowledge and intuitions first before progressing to more advanced and specific topics, the book is well-suited even for clinicians without prior machine learning experience. Authored by a wide array of experienced global machine learning groups, the book is aimed at clinicians who are interested in mastering the basics of machine learning and who wish to get started with their own machine learning research. The volume is structured in two major parts: The first uniquely introduces all major concepts in clinical machine learning from the ground up, and includes step-by-step instructions on how to correctly develop and validate clinical prediction models. It also includes methodological and conceptual foundations of other applications of machine learning in clinical neuroscience, such as applications of machine learning to neuroimaging, natural language processing, and time series analysis. The second part provides an overview of some state-of-the-art applications of these methodologies. The Machine Intelligence in Clinical Neuroscience (MICN) Laboratory at the Department of Neurosurgery of the University Hospital Zurich studies clinical applications of machine intelligence to improve patient care in clinical neuroscience. The group focuses on diagnostic, prognostic and predictive analytics that aid in decision-making by increasing objectivity and transparency to patients. Other major interests of our group members are in medical imaging, and intraoperative applications of machine vision.
Book Synopsis A Systematic Survey of Computer-Aided Diagnosis in Medicine: Past and Present Developments by : Juri Yanase
Download or read book A Systematic Survey of Computer-Aided Diagnosis in Medicine: Past and Present Developments written by Juri Yanase and published by Infinite Study. This book was released on with total page 51 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computer-aided diagnosis (CAD) in medicine is the result of a large amount of effort expended in the interface of medicine and computer science. As some CAD systems in medicine try to emulate the diagnostic decision-making process of medical experts, they can be considered as expert systems in medicine.
Book Synopsis Artificial Intelligence in Medicine by : Allan Tucker
Download or read book Artificial Intelligence in Medicine written by Allan Tucker and published by Springer Nature. This book was released on 2021-06-08 with total page 505 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 19th International Conference on Artificial Intelligence in Medicine, AIME 2021, held as a virtual event, in June 2021. The 28 full papers presented together with 30 short papers were selected from 138 submissions. The papers are grouped in topical sections on image analysis; predictive modelling; temporal data analysis; unsupervised learning; planning and decision support; deep learning; natural language processing; and knowledge representation and rule mining.
Book Synopsis Disease Control Priorities, Third Edition (Volume 6) by : King K. Holmes
Download or read book Disease Control Priorities, Third Edition (Volume 6) written by King K. Holmes and published by World Bank Publications. This book was released on 2017-11-06 with total page 1027 pages. Available in PDF, EPUB and Kindle. Book excerpt: Infectious diseases are the leading cause of death globally, particularly among children and young adults. The spread of new pathogens and the threat of antimicrobial resistance pose particular challenges in combating these diseases. Major Infectious Diseases identifies feasible, cost-effective packages of interventions and strategies across delivery platforms to prevent and treat HIV/AIDS, other sexually transmitted infections, tuberculosis, malaria, adult febrile illness, viral hepatitis, and neglected tropical diseases. The volume emphasizes the need to effectively address emerging antimicrobial resistance, strengthen health systems, and increase access to care. The attainable goals are to reduce incidence, develop innovative approaches, and optimize existing tools in resource-constrained settings.
Book Synopsis Biocomputing 2019 - Proceedings of the Pacific Symposium by : Russ B. Altman
Download or read book Biocomputing 2019 - Proceedings of the Pacific Symposium written by Russ B. Altman and published by World Scientific Publishing Company. This book was released on 2018-11-30 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Pacific Symposium on Biocomputing (PSB) 2019 is an international, multidisciplinary conference for the presentation and discussion of current research in the theory and application of computational methods in problems of biological significance. Presentations are rigorously peer reviewed and are published in an archival proceedings volume. PSB 2019 will be held on January 3 - 7, 2019 in Kohala Coast, Hawaii. Tutorials and workshops will be offered prior to the start of the conference. PSB 2019 will bring together top researchers from the US, the Asian Pacific nations, and around the world to exchange research results and address open issues in all aspects of computational biology. It is a forum for the presentation of work in databases, algorithms, interfaces, visualization, modeling, and other computational methods, as applied to biological problems, with emphasis on applications in data-rich areas of molecular biology. The PSB has been designed to be responsive to the need for critical mass in sub-disciplines within biocomputing. For that reason, it is the only meeting whose sessions are defined dynamically each year in response to specific proposals. PSB sessions are organized by leaders of research in biocomputing's "hot topics." In this way, the meeting provides an early forum for serious examination of emerging methods and approaches in this rapidly changing field.
Book Synopsis Artificial Intelligence in Medicine by : Niklas Lidströmer
Download or read book Artificial Intelligence in Medicine written by Niklas Lidströmer and published by Springer. This book was released on 2022-03-17 with total page 1816 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a structured and analytical guide to the use of artificial intelligence in medicine. Covering all areas within medicine, the chapters give a systemic review of the history, scientific foundations, present advances, potential trends, and future challenges of artificial intelligence within a healthcare setting. Artificial Intelligence in Medicine aims to give readers the required knowledge to apply artificial intelligence to clinical practice. The book is relevant to medical students, specialist doctors, and researchers whose work will be affected by artificial intelligence.
Book Synopsis Machine Learning in Radiation Oncology by : Issam El Naqa
Download or read book Machine Learning in Radiation Oncology written by Issam El Naqa and published by Springer. This book was released on 2015-06-19 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a complete overview of the role of machine learning in radiation oncology and medical physics, covering basic theory, methods, and a variety of applications in medical physics and radiotherapy. An introductory section explains machine learning, reviews supervised and unsupervised learning methods, discusses performance evaluation, and summarizes potential applications in radiation oncology. Detailed individual sections are then devoted to the use of machine learning in quality assurance; computer-aided detection, including treatment planning and contouring; image-guided radiotherapy; respiratory motion management; and treatment response modeling and outcome prediction. The book will be invaluable for students and residents in medical physics and radiation oncology and will also appeal to more experienced practitioners and researchers and members of applied machine learning communities.
Book Synopsis Artificial Intelligence In Medicine by : Peter Szolovits
Download or read book Artificial Intelligence In Medicine written by Peter Szolovits and published by Routledge. This book was released on 2019-03-13 with total page 243 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the field of artificial intelligence in medicine, a new research area that combines sophisticated representational and computing techniques with the insights of expert physicians to produce tools for improving health care. An introductory chapter describes the historical and technical foundations of the work and provides an overview of the current state of the art and research directions. The authors then describe four prototype computer programs that tackle difficult clinical problems in a manner similar to that of an expert physician. The programs presented are internist, a diagnostic aid that combines a large database of disease/manifestation associations with techniques for problem formulation; expert and the Glaucoma Program which use physiological models for the diagnosis and treatment of eye disease; mycin, a rule-based program for diagnosis and therapy selection for infectious diseases; and the Digitalis Therapy Advisor, which aids the physician in prescribing the right dose of the drug digitalis and also explains its actions.
Book Synopsis Deep Active Learning by : Kayo Matsushita
Download or read book Deep Active Learning written by Kayo Matsushita and published by Springer. This book was released on 2017-09-12 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first book to connect the concepts of active learning and deep learning, and to delineate theory and practice through collaboration between scholars in higher education from three countries (Japan, the United States, and Sweden) as well as different subject areas (education, psychology, learning science, teacher training, dentistry, and business).It is only since the beginning of the twenty-first century that active learning has become key to the shift from teaching to learning in Japanese higher education. However, “active learning” in Japan, as in many other countries, is just an umbrella term for teaching methods that promote students’ active participation, such as group work, discussions, presentations, and so on.What is needed for students is not just active learning but deep active learning. Deep learning focuses on content and quality of learning whereas active learning, especially in Japan, focuses on methods of learning. Deep active learning is placed at the intersection of active learning and deep learning, referring to learning that engages students with the world as an object of learning while interacting with others, and helps the students connect what they are learning with their previous knowledge and experiences as well as their future lives.What curricula, pedagogies, assessments and learning environments facilitate such deep active learning? This book attempts to respond to that question by linking theory with practice.
Author :National Academies of Sciences, Engineering, and Medicine Publisher :National Academies Press ISBN 13 :0309497299 Total Pages :307 pages Book Rating :4.3/5 (94 download)
Book Synopsis The Science of Effective Mentorship in STEMM by : National Academies of Sciences, Engineering, and Medicine
Download or read book The Science of Effective Mentorship in STEMM written by National Academies of Sciences, Engineering, and Medicine and published by National Academies Press. This book was released on 2020-01-24 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mentorship is a catalyst capable of unleashing one's potential for discovery, curiosity, and participation in STEMM and subsequently improving the training environment in which that STEMM potential is fostered. Mentoring relationships provide developmental spaces in which students' STEMM skills are honed and pathways into STEMM fields can be discovered. Because mentorship can be so influential in shaping the future STEMM workforce, its occurrence should not be left to chance or idiosyncratic implementation. There is a gap between what we know about effective mentoring and how it is practiced in higher education. The Science of Effective Mentorship in STEMM studies mentoring programs and practices at the undergraduate and graduate levels. It explores the importance of mentorship, the science of mentoring relationships, mentorship of underrepresented students in STEMM, mentorship structures and behaviors, and institutional cultures that support mentorship. This report and its complementary interactive guide present insights on effective programs and practices that can be adopted and adapted by institutions, departments, and individual faculty members.
Book Synopsis Predicting Human Decision-Making by : Ariel Rosenfeld
Download or read book Predicting Human Decision-Making written by Ariel Rosenfeld and published by Morgan & Claypool Publishers. This book was released on 2018-01-22 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt: Human decision-making often transcends our formal models of "rationality." Designing intelligent agents that interact proficiently with people necessitates the modeling of human behavior and the prediction of their decisions. In this book, we explore the task of automatically predicting human decision-making and its use in designing intelligent human-aware automated computer systems of varying natures—from purely conflicting interaction settings (e.g., security and games) to fully cooperative interaction settings (e.g., autonomous driving and personal robotic assistants). We explore the techniques, algorithms, and empirical methodologies for meeting the challenges that arise from the above tasks and illustrate major benefits from the use of these computational solutions in real-world application domains such as security, negotiations, argumentative interactions, voting systems, autonomous driving, and games. The book presents both the traditional and classical methods as well as the most recent and cutting edge advances, providing the reader with a panorama of the challenges and solutions in predicting human decision-making.
Book Synopsis MATLAB Machine Learning by : Michael Paluszek
Download or read book MATLAB Machine Learning written by Michael Paluszek and published by Apress. This book was released on 2016-12-28 with total page 335 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a comprehensive guide to machine learning with worked examples in MATLAB. It starts with an overview of the history of Artificial Intelligence and automatic control and how the field of machine learning grew from these. It provides descriptions of all major areas in machine learning. The book reviews commercially available packages for machine learning and shows how they fit into the field. The book then shows how MATLAB can be used to solve machine learning problems and how MATLAB graphics can enhance the programmer’s understanding of the results and help users of their software grasp the results. Machine Learning can be very mathematical. The mathematics for each area is introduced in a clear and concise form so that even casual readers can understand the math. Readers from all areas of engineering will see connections to what they know and will learn new technology. The book then provides complete solutions in MATLAB for several important problems in machine learning including face identification, autonomous driving, and data classification. Full source code is provided for all of the examples and applications in the book. What you'll learn: An overview of the field of machine learning Commercial and open source packages in MATLAB How to use MATLAB for programming and building machine learning applications MATLAB graphics for machine learning Practical real world examples in MATLAB for major applications of machine learning in big data Who is this book for: The primary audiences are engineers and engineering students wanting a comprehensive and practical introduction to machine learning.
Book Synopsis Negation and Speculation Detection by : Noa P. Cruz Díaz
Download or read book Negation and Speculation Detection written by Noa P. Cruz Díaz and published by John Benjamins Publishing Company. This book was released on 2019-02-15 with total page 107 pages. Available in PDF, EPUB and Kindle. Book excerpt: Negation and speculation detection is an emerging topic that has attracted the attention of many researchers, and there is clearly a lack of relevant textbooks and survey texts. This book aims to define negation and speculation from a natural language processing perspective, to explain the need for processing these phenomena, to summarise existing research on processing negation and speculation, to provide a list of resources and tools, and to speculate about future developments in this research area. An advantage of this book is that it will not only provide an overview of the state of the art in negation and speculation detection, but will also introduce newly developed data sets and scripts. It will be useful for students of natural language processing subjects who are interested in understanding this task in more depth and for researchers with an interest in these phenomena in order to improve performance in other natural language processing tasks.
Book Synopsis Secondary Analysis of Electronic Health Records by : MIT Critical Data
Download or read book Secondary Analysis of Electronic Health Records written by MIT Critical Data and published by Springer. This book was released on 2016-09-09 with total page 435 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book trains the next generation of scientists representing different disciplines to leverage the data generated during routine patient care. It formulates a more complete lexicon of evidence-based recommendations and support shared, ethical decision making by doctors with their patients. Diagnostic and therapeutic technologies continue to evolve rapidly, and both individual practitioners and clinical teams face increasingly complex ethical decisions. Unfortunately, the current state of medical knowledge does not provide the guidance to make the majority of clinical decisions on the basis of evidence. The present research infrastructure is inefficient and frequently produces unreliable results that cannot be replicated. Even randomized controlled trials (RCTs), the traditional gold standards of the research reliability hierarchy, are not without limitations. They can be costly, labor intensive, and slow, and can return results that are seldom generalizable to every patient population. Furthermore, many pertinent but unresolved clinical and medical systems issues do not seem to have attracted the interest of the research enterprise, which has come to focus instead on cellular and molecular investigations and single-agent (e.g., a drug or device) effects. For clinicians, the end result is a bit of a “data desert” when it comes to making decisions. The new research infrastructure proposed in this book will help the medical profession to make ethically sound and well informed decisions for their patients.
Book Synopsis Practical MATLAB Deep Learning by : Michael Paluszek
Download or read book Practical MATLAB Deep Learning written by Michael Paluszek and published by Apress. This book was released on 2020-02-07 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: Harness the power of MATLAB for deep-learning challenges. This book provides an introduction to deep learning and using MATLAB's deep-learning toolboxes. You’ll see how these toolboxes provide the complete set of functions needed to implement all aspects of deep learning. Along the way, you'll learn to model complex systems, including the stock market, natural language, and angles-only orbit determination. You’ll cover dynamics and control, and integrate deep-learning algorithms and approaches using MATLAB. You'll also apply deep learning to aircraft navigation using images. Finally, you'll carry out classification of ballet pirouettes using an inertial measurement unit to experiment with MATLAB's hardware capabilities. What You Will LearnExplore deep learning using MATLAB and compare it to algorithmsWrite a deep learning function in MATLAB and train it with examplesUse MATLAB toolboxes related to deep learningImplement tokamak disruption predictionWho This Book Is For Engineers, data scientists, and students wanting a book rich in examples on deep learning using MATLAB.