Phonon Transport in Ultrahigh and Ultralow Thermal Conductivity Materials

Download Phonon Transport in Ultrahigh and Ultralow Thermal Conductivity Materials PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 151 pages
Book Rating : 4.:/5 (113 download)

DOWNLOAD NOW!


Book Synopsis Phonon Transport in Ultrahigh and Ultralow Thermal Conductivity Materials by : Joonsang Kang

Download or read book Phonon Transport in Ultrahigh and Ultralow Thermal Conductivity Materials written by Joonsang Kang and published by . This book was released on 2019 with total page 151 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced materials with extreme thermal conductivity are critically important for various technological applications including energy conversion, storage, and thermal management. Low thermal conductivity is needed for thermal insulation and thermoelectric energy harvesting, while high thermal conductivity is desirable for efficient heat spreading in electronics. However, practical application deployments are usually limited by the materials availability in nature. Moreover, understanding the fundamental origins for extreme thermal conductivity still remains challenging. My PhD research focuses on finding new thermal materials and unveiling fundamental phonon transport mechanisms in extreme thermal conductivity matters to push the frontier of thermal science. My dissertation is composed of three topics. The first topic is focused on developing and investigating a new group of ultrahigh conductivity materials. High-quality boron phosphide (BP) and boron arsenide (BAs) crystal are synthesized and measured with thermal conductivities of 460 and 1300 W/mK, respectively. In particular, our result shows that BAs is the best thermal conductor among common bulk metals and semiconductors. To better understand the fundamental origin of such an ultrahigh thermal conductivity, advanced phonon spectroscopy and temperature dependent characterizations are performed. Our measurements, in conjunction with atomistic theory, reveal that, unlike the commonly accepted rule for most materials near room temperature, high-order anharmonicity through the four-phonon process is significant in BA because of its unique band structure. Our result underscores the promise of using BP and BAs for thermal management and develops microscopic understanding of the phonon transport mechanisms. The second topic of my thesis is to investigate phonon transport in ultralow thermal conductivity material with a focus on tin selenide (SnSe). SnSe is a recently discovered material for high performance thermoelectricity. However, the thermal properties of intrinsic SnSe remain elusive in literature. To understand the dominant phonon transport mechanisms for the extremely low thermal conductivity of SnSe, temperature-dependent sound velocity, lattice expansion, and Gr neisen parameter was measured. The measurement result shows that high-order anharmonicity introduces strong phonon renormalization and the ultralow thermal conductivity. The third topic of the thesis is to investigate in-situ dynamic tuning of thermal conductivity in layered materials. A novel device platform based on lithium ion battery is developed to characterize the interactions between ions and phonons of layered materials. We observe a highly reversible modulation and anisotropy of thermal conductivity from phonon scattering introduced by ionic intercalation in the interspacing layers. This study provides a unique approach to explore the fundamental energy transport involving lattices and ions and open up new opportunities in thermal engineering.

First-Principles Theoretical Investigation on Phonon Transport in Materials with Extreme Conductivity

Download First-Principles Theoretical Investigation on Phonon Transport in Materials with Extreme Conductivity PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 0 pages
Book Rating : 4.:/5 (134 download)

DOWNLOAD NOW!


Book Synopsis First-Principles Theoretical Investigation on Phonon Transport in Materials with Extreme Conductivity by : Huan Wu

Download or read book First-Principles Theoretical Investigation on Phonon Transport in Materials with Extreme Conductivity written by Huan Wu and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced materials with extreme thermal conductivity are critically important for various technological applications including energy conversion, storage, and thermal management. High thermal conductivity is desirable for efficient heat spreading in electronics, and low thermal conductivity is needed for thermal insulation and thermoelectric energy harvesting. However, practical application deployments are usually limited by the materials availability and understanding the fundamental origins for extreme thermal conductivity remains challenging. My PhD research focuses on applying and developing first-principles computations to understand the microscopic thermal transport mechanisms of the emerging materials and to discover new materials with ultrahigh and ultralow thermal conductivity. My dissertation is composed of three themes. The first theme is focused on understanding the fundamental origins and transport mechanisms for a group of high thermal conductivity semiconductors that were discovered recently by our group. In particular, boron phosphide (BP) and boron arsenide (BAs) crystals have been synthesized and measured with thermal conductivities of 460 and 1300 W/mK respectively, representing the best thermal conductor among common bulk metals and semiconductors. I have conducted ab initio calculations based on density functional theory to investigate phonon anharmonicity, size-dependent transport from diffusive to ballistic regime, as well as the effect from defect scattering. Our study shows that, unlike the commonly accepted rule for most materials near room temperature, high-order anharmonicity through the four-phonon process is significant in BA because of its unique band structure. In addition, I have performed multiscale Monte Carlo simulations to solve phonon Boltzmann transport equations to compute heat dissipation in three-dimensional practical measurement samples and electronic devices, which quantitively determines temperature distributed resulted by non-equilibrium phonon transport and underscores the promise of our developed BP and BAs for the next generation of thermal management technologies. The second theme of my thesis is to theoretical search for new ultra-high thermal conductivity materials, with the aim to push the limit of existing materials database. We have calculated the thermal conductivity of several B-C-X ternary compounds and found the R3m-BNC2 has ultrahigh thermal conductivity at ~2200 W/mK, which is comparable with the existing highest thermal conductivity materials, diamond. We also calculate the thermal conductivity of single-layer boron compounds in III-V group, and find high thermal conductivity of single-layer h-BAs at around 400 W/K. My computational studies enable atomistic understanding through their phonon band structures, scattering spaces, lifetimes, etc. The third theme of my thesis is to investigate phonon transport in ultralow thermal conductivity materials with a focus on tin selenide (SnSe). SnSe is a recently discovered high performance thermoelectric material, but its intrinsic low thermal conductivity remains debating in recent literature. In collaboration with my labmates, we combine phonon theory and experiments to investigate phonon softening physics. In particular, my calculated phonon frequencies of SnSe under varying temperatures indicate strong phonon renormalization due to higher-order anharmonicity. The comparison of my theory results with experiments indicates that the widely used harmonic model fails to descript the phonon renormalization and thus thermal conductivity of SnSe. Instead, I have developed self-consistent phonon theory to capture the higher order interactions and provided very good agreement with the experimentally measured ultralow thermal conductivity and thermophysical properties of SnSe.

The Physics of Phonons

Download The Physics of Phonons PDF Online Free

Author :
Publisher : Routledge
ISBN 13 : 1351409557
Total Pages : 438 pages
Book Rating : 4.3/5 (514 download)

DOWNLOAD NOW!


Book Synopsis The Physics of Phonons by : Gyaneshwar P. Srivastava

Download or read book The Physics of Phonons written by Gyaneshwar P. Srivastava and published by Routledge. This book was released on 2019-07-16 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: There have been few books devoted to the study of phonons, a major area of condensed matter physics. The Physics of Phonons is a comprehensive theoretical discussion of the most important topics, including some topics not previously presented in book form. Although primarily theoretical in approach, the author refers to experimental results wherever possible, ensuring an ideal book for both experimental and theoretical researchers. The author begins with an introduction to crystal symmetry and continues with a discussion of lattice dynamics in the harmonic approximation, including the traditional phenomenological approach and the more recent ab initio approach, detailed for the first time in this book. A discussion of anharmonicity is followed by the theory of lattice thermal conductivity, presented at a level far beyond that available in any other book. The chapter on phonon interactions is likewise more comprehensive than any similar discussion elsewhere. The sections on phonons in superlattices, impure and mixed crystals, quasicrystals, phonon spectroscopy, Kapitza resistance, and quantum evaporation also contain material appearing in book form for the first time. The book is complemented by numerous diagrams that aid understanding and is comprehensively referenced for further study. With its unprecedented wide coverage of the field, The Physics of Phonons will be indispensable to all postgraduates, advanced undergraduates, and researchers working on condensed matter physics.

Phonon Focusing and Phonon Transport

Download Phonon Focusing and Phonon Transport PDF Online Free

Author :
Publisher : Walter de Gruyter GmbH & Co KG
ISBN 13 : 311067050X
Total Pages : 221 pages
Book Rating : 4.1/5 (16 download)

DOWNLOAD NOW!


Book Synopsis Phonon Focusing and Phonon Transport by : Igor Gaynitdinovich Kuleyev

Download or read book Phonon Focusing and Phonon Transport written by Igor Gaynitdinovich Kuleyev and published by Walter de Gruyter GmbH & Co KG. This book was released on 2020-06-08 with total page 221 pages. Available in PDF, EPUB and Kindle. Book excerpt: The monograph is devoted to the investigation of physical processes that govern the phonon transport in bulk and nanoscale single-crystal samples of cubic symmetry. Special emphasis is given to the study of phonon focusing in cubic crystals and its influence on the boundary scattering and lattice thermal conductivity of bulk materials and nanostructures.

Peak Thermal Conductivity Measurements of Bulk Boron Arsenide Crystals and Individual Carbon Nanotubes

Download Peak Thermal Conductivity Measurements of Bulk Boron Arsenide Crystals and Individual Carbon Nanotubes PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 0 pages
Book Rating : 4.:/5 (14 download)

DOWNLOAD NOW!


Book Synopsis Peak Thermal Conductivity Measurements of Bulk Boron Arsenide Crystals and Individual Carbon Nanotubes by : Yuanyuan Zhou

Download or read book Peak Thermal Conductivity Measurements of Bulk Boron Arsenide Crystals and Individual Carbon Nanotubes written by Yuanyuan Zhou and published by . This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: High-thermal conductivity materials are useful for thermal management applications and fundamental studies of phonon transport. Conventional criteria suggests high thermal conductivity only exists in strongly bonded simple crystal structures of light elements, such as diamond, graphite, graphene, and carbon nanotubes (CNTs). In comparison, recent theories and experiments have shown zincblende boron Arsenide (BAs) as the first known semiconductor with a room-temperature thermal conductivity close to 1000 W m−1 K−1. The unusual high thermal conductivity is achieved via an unconventional route based on isotopically pure heavy atom and a large mass ratio of constituent atoms, the latter of which results in a large energy gap between the acoustic and option phonon polarizations and bunching of the acoustic phonon dispersions. These features in the phonon band structure limit three-phonon scattering and scattering by isotopic impurities. Past measurements of several ultrahigh thermal conductivity materials, including BAs bulk crystals, were not able to obtain the peak thermal conductivity, which is expected to appear at a low temperature and contains insight into the competition between extrinsic phonon-defect and phonon-boundary scattering with intrinsic phonon-phonon processes. Meanwhile, past thermal conductivity measurements of CNTs are subjected to errors caused by contact thermal resistance. The observed peak temperatures are much higher than those reported for bulk graphite. The results suggest that extrinsic phonon scattering mechanisms dominate intrinsic phonon-phonon scattering that is predicted to give rise to non-diffusive phonon transport phenomena including hydrodynamic, ballistic, and quantized phonon transport regimes. Here we report a peak thermal conductivity measurement method based on differential Wheatstone bridge measurements of the small temperature drop between two thin film resistance thermometers patterned directly on a bulk sample. With the use of a mesoscale silicon bar sample as the calibration standard, this method is able to obtain results that agree with past measurements of large bulk silicon crystals at high temperatures and first principles calculation results that accounts for additional phonon-boundary scattering in the sample. The agreement demonstrates the accuracy of this measurement method for peak thermal conductivity measurements of high-thermal conductivity materials. This method was employed to measure the peak thermal conductivity of several BAs crystals. In addition, a multi-probe thermal transport measurement method was used to determine both the contact thermal resistance and the intrinsic thermal conductance of different segments of the same individual multi-walled CNT samples simultaneously and directly. The differential thin film resistance thermometry method is expected to address the need of accurate peak thermal conductivity measurement methods and find use in the ongoing search of high-thermal conductivity materials for thermal management. The obtained peak thermal conductivity measurements of BAs can help to advance the understanding of phonon scatterings by phonons, boundaries, and defects in ultrahigh thermal conductivity materials. The thermal transport measurement of CNTs validates the multi-probe method for probing intrinsic thermal conductivity of nanostructures, and can provide an essential tool for further studying hydrodynamic, ballistic, and quantized phonon transport phenomena in high-quality CNTs and other low-dimensional structures

Thermal Conductivity

Download Thermal Conductivity PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 038726017X
Total Pages : 306 pages
Book Rating : 4.3/5 (872 download)

DOWNLOAD NOW!


Book Synopsis Thermal Conductivity by : Terry M. Tritt

Download or read book Thermal Conductivity written by Terry M. Tritt and published by Springer Science & Business Media. This book was released on 2006-10-03 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: It has been almost thirty years since the publication of a book that is entirely dedicated to the theory, description, characterization and measurement of the thermal conductivity of solids. The recent discovery of new materials which possess more complex crystal structures and thus more complicated phonon scattering mechanisms have brought innovative challenges to the theory and experimental understanding of these new materials. With the development of new and novel solid materials and new measurement techniques, this book will serve as a current and extensive resource to the next generation researchers in the field of thermal conductivity. This book is a valuable resource for research groups and special topics courses (8-10 students), for 1st or 2nd year graduate level courses in Thermal Properties of Solids, special topics courses in Thermal Conductivity, Superconductors and Magnetic Materials, and to researchers in Thermoelectrics, Thermal Barrier Materials and Solid State Physics.

Thermoelectric Nanomaterials

Download Thermoelectric Nanomaterials PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642375375
Total Pages : 395 pages
Book Rating : 4.6/5 (423 download)

DOWNLOAD NOW!


Book Synopsis Thermoelectric Nanomaterials by : Kunihito Koumoto

Download or read book Thermoelectric Nanomaterials written by Kunihito Koumoto and published by Springer Science & Business Media. This book was released on 2013-07-20 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presently, there is an intense race throughout the world to develop good enough thermoelectric materials which can be used in wide scale applications. This book focuses comprehensively on very recent up-to-date breakthroughs in thermoelectrics utilizing nanomaterials and methods based in nanoscience. Importantly, it provides the readers with methodology and concepts utilizing atomic scale and nanoscale materials design (such as superlattice structuring, atomic network structuring and properties control, electron correlation design, low dimensionality, nanostructuring, etc.). Furthermore, also indicates the applications of thermoelectrics expected for the large emerging energy market. This book has a wide appeal and application value for anyone being interested in state-of-the-art thermoelectrics and/or actual viable applications in nanotechnology.

Energy Materials

Download Energy Materials PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9811270961
Total Pages : 382 pages
Book Rating : 4.8/5 (112 download)

DOWNLOAD NOW!


Book Synopsis Energy Materials by : M Eswaramoorthy

Download or read book Energy Materials written by M Eswaramoorthy and published by World Scientific. This book was released on 2023-02-06 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: The world is in short supply of energy. Along with environmental factors, it has become crucial for science to provide solutions. Energy Materials is a significant area of research in material science.The various aspects of energy include electrical power, comprising batteries, supercapacitors, thermoelectric energy conversion, photovoltaics, etc. Hydrogen is available in abundance, but catalysts are needed for the catalysis, so catalysts or porous solids have universal appeal in usage and applications. Then there are nuclear energy materials.Overall, energy materials have now captured the most attention worldwide in research and investment. This book covers various sections that are currently exploring energy solutions through materials.

The Oxford Solid State Basics

Download The Oxford Solid State Basics PDF Online Free

Author :
Publisher : Oxford University Press
ISBN 13 : 0199680760
Total Pages : 308 pages
Book Rating : 4.1/5 (996 download)

DOWNLOAD NOW!


Book Synopsis The Oxford Solid State Basics by : Steven H. Simon

Download or read book The Oxford Solid State Basics written by Steven H. Simon and published by Oxford University Press. This book was released on 2013-06-20 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a first undergraduate textbook in Solid State Physics or Condensed Matter Physics. While most textbooks on the subject are extremely dry, this book is written to be much more exciting, inspiring, and entertaining.

Organic Thermoelectric Materials

Download Organic Thermoelectric Materials PDF Online Free

Author :
Publisher : Royal Society of Chemistry
ISBN 13 : 1788014707
Total Pages : 330 pages
Book Rating : 4.7/5 (88 download)

DOWNLOAD NOW!


Book Synopsis Organic Thermoelectric Materials by : Zhiqun Lin

Download or read book Organic Thermoelectric Materials written by Zhiqun Lin and published by Royal Society of Chemistry. This book was released on 2019-10-18 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book summarises the significant progress made in organic thermoelectric materials, focusing on effective routes to minimize thermal conductivity and maximize power factor.

Thermoelectric Materials and Devices

Download Thermoelectric Materials and Devices PDF Online Free

Author :
Publisher : Royal Society of Chemistry
ISBN 13 : 178262323X
Total Pages : 269 pages
Book Rating : 4.7/5 (826 download)

DOWNLOAD NOW!


Book Synopsis Thermoelectric Materials and Devices by : Iris Nandhakumar

Download or read book Thermoelectric Materials and Devices written by Iris Nandhakumar and published by Royal Society of Chemistry. This book was released on 2017 with total page 269 pages. Available in PDF, EPUB and Kindle. Book excerpt: Authoritative account of recent developments in thermoelectric materials and devices for power energy harvesting applications, ideal for researchers and industrialists in materials science.

Synthesis, Modelling and Characterization of 2D Materials and their Heterostructures

Download Synthesis, Modelling and Characterization of 2D Materials and their Heterostructures PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0128184760
Total Pages : 502 pages
Book Rating : 4.1/5 (281 download)

DOWNLOAD NOW!


Book Synopsis Synthesis, Modelling and Characterization of 2D Materials and their Heterostructures by : Eui-Hyeok Yang

Download or read book Synthesis, Modelling and Characterization of 2D Materials and their Heterostructures written by Eui-Hyeok Yang and published by Elsevier. This book was released on 2020-06-19 with total page 502 pages. Available in PDF, EPUB and Kindle. Book excerpt: Synthesis, Modelling and Characterization of 2D Materials and Their Heterostructures provides a detailed discussion on the multiscale computational approach surrounding atomic, molecular and atomic-informed continuum models. In addition to a detailed theoretical description, this book provides example problems, sample code/script, and a discussion on how theoretical analysis provides insight into optimal experimental design. Furthermore, the book addresses the growth mechanism of these 2D materials, the formation of defects, and different lattice mismatch and interlayer interactions. Sections cover direct band gap, Raman scattering, extraordinary strong light matter interaction, layer dependent photoluminescence, and other physical properties. Explains multiscale computational techniques, from atomic to continuum scale, covering different time and length scales Provides fundamental theoretical insights, example problems, sample code and exercise problems Outlines major characterization and synthesis methods for different types of 2D materials

Nanoscale Energy Transport and Conversion

Download Nanoscale Energy Transport and Conversion PDF Online Free

Author :
Publisher : Oxford University Press
ISBN 13 : 9780199774685
Total Pages : 570 pages
Book Rating : 4.7/5 (746 download)

DOWNLOAD NOW!


Book Synopsis Nanoscale Energy Transport and Conversion by : Gang Chen

Download or read book Nanoscale Energy Transport and Conversion written by Gang Chen and published by Oxford University Press. This book was released on 2005-03-03 with total page 570 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a graduate level textbook in nanoscale heat transfer and energy conversion that can also be used as a reference for researchers in the developing field of nanoengineering. It provides a comprehensive overview of microscale heat transfer, focusing on thermal energy storage and transport. Chen broadens the readership by incorporating results from related disciplines, from the point of view of thermal energy storage and transport, and presents related topics on the transport of electrons, phonons, photons, and molecules. This book is part of the MIT-Pappalardo Series in Mechanical Engineering.

Advanced Thermoelectric Materials

Download Advanced Thermoelectric Materials PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119407362
Total Pages : 638 pages
Book Rating : 4.1/5 (194 download)

DOWNLOAD NOW!


Book Synopsis Advanced Thermoelectric Materials by : Chong Rae Park

Download or read book Advanced Thermoelectric Materials written by Chong Rae Park and published by John Wiley & Sons. This book was released on 2019-03-12 with total page 638 pages. Available in PDF, EPUB and Kindle. Book excerpt: Your guide to advanced thermoelectric materials Written by a distinguished group of contributors, this book provides comprehensive coverage of the most up-to-date information on all aspects of advanced thermoelectric materials — ranging from system biology, diagnostics, imaging, image-guided therapy, therapeutics, biosensors, and translational medicine and personalized medicine, as well as the much broader task of covering most topics of biomedical research.

Predicting Phonon Transport in Two-Dimensional Materials Using First-Principles Calculations and the Boltzmann Transport Equation

Download Predicting Phonon Transport in Two-Dimensional Materials Using First-Principles Calculations and the Boltzmann Transport Equation PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 0 pages
Book Rating : 4.:/5 (133 download)

DOWNLOAD NOW!


Book Synopsis Predicting Phonon Transport in Two-Dimensional Materials Using First-Principles Calculations and the Boltzmann Transport Equation by : Armin Taheri

Download or read book Predicting Phonon Transport in Two-Dimensional Materials Using First-Principles Calculations and the Boltzmann Transport Equation written by Armin Taheri and published by . This book was released on 2020 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main objective of this thesis is to study phonon thermal transport in two-dimensional (2D) materials using first-principles density functional theory (DFT) calculations and the full solution of the Boltzmann transport equation (BTE). A wide range of 2D materials including graphene, 2D structures of group-VA, and recently emerged NX (X=P, As, Sb) compound monolayers are considered. Special attention is given to a mode-by-mode study of the thermal tunability via strain and functionalization. First, this thesis investigated the sensitivity of the DFT-calculated intrinsic thermal conductivity and phonon properties of 2D materials to the choice of exchange-correlation (XC) and pseudopotential (PP). It was found that the choice of the XC-PP combination results in significant discrepancies among predicted thermal conductivities of graphene at room temperature, in the range of 5442-8677 Wm^(-1)K^(-1). The LDA-NC and PBE-PAW combinations predicted the thermal conductivities in best agreement with available experimental data. This sensitivity analysis was an essential first step towards using DFT to engineer the phonon thermal transport in 2D systems. Next, DFT was used to systematically investigate the strain-dependent lattice thermal conductivity of -arsenene and -phosphorene, 2D monolayers of group-VA. The results showed that the thermal conductivity in both monolayers exhibits an up-and-down behavior when biaxial tensile strain is applied in the range from 0% to 9%. An interplay between phonon group velocities, heat capacities, and relaxation times, is found to be responsible for this behaviour. Finally, this project investigated the thermal conductivity of nitrogen functionalized - NX (X=P, As, Sb) monolayers. The results showed that the room-temperature thermal conductivities of -NP, -NAs, and -NSb are about 1.1, 5.5, and 34.0 times higher than those of their single-element -P, -As, and -Sb monolayers, respectively. The phonon transport analysis revealed that higher phonon group velocities, as well as higher phonon lifetimes were responsible for such an enhancement in the thermal conductivities of - NX compounds compared to single-element group-VA monolayers. Also, it was found that -NP has the minimum thermal conductivity among -NX monolayers, while it has the minimum average atomic mass. This thesis provides valuable insight into phonon physics and thermal transport in novel 2D materials using advanced DFT calculations.

Transport in Phonon Systems

Download Transport in Phonon Systems PDF Online Free

Author :
Publisher : North Holland
ISBN 13 :
Total Pages : 444 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Transport in Phonon Systems by : Vadim Lʹvovich Gurevich

Download or read book Transport in Phonon Systems written by Vadim Lʹvovich Gurevich and published by North Holland. This book was released on 1986 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: In Transport in Phonon Systems'' the principles of physical kinetics are given and the description of transport properties in a wide class of macroscopic physical systems - the phonon systems - is presented. Important problems of phonon transport such as thermal conductivity and thermal waves of second sound, dielectric losses, sound propagation and absorption, phonon echo, and phonon transport in superfluid helium II are discussed. Many of these problems are discussed for the first time and the author presents numerous original results. Not only specialists but also those wishing to enter the field of phonon physics and phonon kinetics can benefit from Transport in Phonon Systems''.

Soft Phonon Modes Leading to Ultralow Thermal Conductivity and High Thermoelectric Performance in AgCuTe

Download Soft Phonon Modes Leading to Ultralow Thermal Conductivity and High Thermoelectric Performance in AgCuTe PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (15 download)

DOWNLOAD NOW!


Book Synopsis Soft Phonon Modes Leading to Ultralow Thermal Conductivity and High Thermoelectric Performance in AgCuTe by :

Download or read book Soft Phonon Modes Leading to Ultralow Thermal Conductivity and High Thermoelectric Performance in AgCuTe written by and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: