Path Integrals for Stochastic Processes

Download Path Integrals for Stochastic Processes PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9814449040
Total Pages : 174 pages
Book Rating : 4.8/5 (144 download)

DOWNLOAD NOW!


Book Synopsis Path Integrals for Stochastic Processes by : Horacio S. Wio

Download or read book Path Integrals for Stochastic Processes written by Horacio S. Wio and published by World Scientific. This book was released on 2013 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introductory albeit solid presentation of path integration techniques as applied to the field of stochastic processes. The subject began with the work of Wiener during the 1920''s, corresponding to a sum over random trajectories, anticipating by two decades Feynman''s famous work on the path integral representation of quantum mechanics. However, the true trigger for the application of these techniques within nonequilibrium statistical mechanics and stochastic processes was the work of Onsager and Machlup in the early 1950''s. The last quarter of the 20th century has witnessed a growing interest in this technique and its application in several branches of research, even outside physics (for instance, in economy).The aim of this book is to offer a brief but complete presentation of the path integral approach to stochastic processes. It could be used as an advanced textbook for graduate students and even ambitious undergraduates in physics. It describes how to apply these techniques for both Markov and non-Markov processes. The path expansion (or semiclassical approximation) is discussed and adapted to the stochastic context. Also, some examples of nonlinear transformations and some applications are discussed, as well as examples of rather unusual applications. An extensive bibliography is included. The book is detailed enough to capture the interest of the curious reader, and complete enough to provide a solid background to explore the research literature and start exploiting the learned material in real situations.

Path Integrals in Physics

Download Path Integrals in Physics PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 9780367397142
Total Pages : 336 pages
Book Rating : 4.3/5 (971 download)

DOWNLOAD NOW!


Book Synopsis Path Integrals in Physics by : M Chaichian

Download or read book Path Integrals in Physics written by M Chaichian and published by CRC Press. This book was released on 2019-08-30 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: Path Integrals in Physics: Volume I, Stochastic Processes and Quantum Mechanics presents the fundamentals of path integrals, both the Wiener and Feynman type, and their many applications in physics. Accessible to a broad community of theoretical physicists, the book deals with systems possessing a infinite number of degrees in freedom. It discusses the general physical background and concepts of the path integral approach used, followed by a detailed presentation of the most typical and important applications as well as problems with either their solutions or hints how to solve them. It describes in detail various applications, including systems with Grassmann variables. Each chapter is self-contained and can be considered as an independent textbook. The book provides a comprehensive, detailed, and systematic account of the subject suitable for both students and experienced researchers.

Path Integrals in Physics

Download Path Integrals in Physics PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 9780750308021
Total Pages : 368 pages
Book Rating : 4.3/5 (8 download)

DOWNLOAD NOW!


Book Synopsis Path Integrals in Physics by : M Chaichian

Download or read book Path Integrals in Physics written by M Chaichian and published by CRC Press. This book was released on 2001-07-01 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: The path integral approach has proved extremely useful for the understanding of the most complex problems in quantum field theory, cosmology, and condensed matter physics. Path Integrals in Physics: Volume II, Quantum Field Theory, Statistical Physics and other Modern Applications covers the fundamentals of path integrals, both the Wiener and Feynman types, and their many applications in physics. The book deals with systems that have an infinite number of degrees of freedom. It discusses the general physical background and concepts of the path integral approach used, followed by a detailed presentation of the most typical and important applications as well as problems with either their solutions or hints how to solve them. Each chapter is self-contained and can be considered as an independent textbook. It provides a comprehensive, detailed, and systematic account of the subject suitable for both students and experienced researchers.

Path Integrals For Stochastic Processes: An Introduction

Download Path Integrals For Stochastic Processes: An Introduction PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9814449059
Total Pages : 174 pages
Book Rating : 4.8/5 (144 download)

DOWNLOAD NOW!


Book Synopsis Path Integrals For Stochastic Processes: An Introduction by : Horacio Sergio Wio

Download or read book Path Integrals For Stochastic Processes: An Introduction written by Horacio Sergio Wio and published by World Scientific. This book was released on 2013-01-18 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introductory albeit solid presentation of path integration techniques as applied to the field of stochastic processes. The subject began with the work of Wiener during the 1920's, corresponding to a sum over random trajectories, anticipating by two decades Feynman's famous work on the path integral representation of quantum mechanics. However, the true trigger for the application of these techniques within nonequilibrium statistical mechanics and stochastic processes was the work of Onsager and Machlup in the early 1950's. The last quarter of the 20th century has witnessed a growing interest in this technique and its application in several branches of research, even outside physics (for instance, in economy).The aim of this book is to offer a brief but complete presentation of the path integral approach to stochastic processes. It could be used as an advanced textbook for graduate students and even ambitious undergraduates in physics. It describes how to apply these techniques for both Markov and non-Markov processes. The path expansion (or semiclassical approximation) is discussed and adapted to the stochastic context. Also, some examples of nonlinear transformations and some applications are discussed, as well as examples of rather unusual applications. An extensive bibliography is included. The book is detailed enough to capture the interest of the curious reader, and complete enough to provide a solid background to explore the research literature and start exploiting the learned material in real situations. remove /a

Path Integrals and Quantum Processes

Download Path Integrals and Quantum Processes PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 0486782301
Total Pages : 463 pages
Book Rating : 4.4/5 (867 download)

DOWNLOAD NOW!


Book Synopsis Path Integrals and Quantum Processes by : Mark S. Swanson

Download or read book Path Integrals and Quantum Processes written by Mark S. Swanson and published by Courier Corporation. This book was released on 2014-02-19 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graduate-level, systematic presentation of path integral approach to calculating transition elements, partition functions, and source functionals. Covers Grassmann variables, field and gauge field theory, perturbation theory, and nonperturbative results. 1992 edition.

Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets

Download Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9814273570
Total Pages : 1626 pages
Book Rating : 4.8/5 (142 download)

DOWNLOAD NOW!


Book Synopsis Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets by : Hagen Kleinert

Download or read book Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets written by Hagen Kleinert and published by World Scientific. This book was released on 2009 with total page 1626 pages. Available in PDF, EPUB and Kindle. Book excerpt: Topological restrictions. These are relevant to the understanding of the statistical properties of elementary particles and the entanglement phenomena in polymer physics and biophysics. The Chern-Simons theory of particles with fractional statistics (anyons) is introduced and applied to explain the fractional quantum Hall effect." "The relevance of path integrals to financial markets is discussed, and improvements of the famous Black-Scholes formula for option prices are developed which account for the fact that large market fluctuations occur much more frequently than in Gaussian distributions." --Book Jacket.

Mathematical Theory of Feynman Path Integrals

Download Mathematical Theory of Feynman Path Integrals PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 354038250X
Total Pages : 143 pages
Book Rating : 4.5/5 (43 download)

DOWNLOAD NOW!


Book Synopsis Mathematical Theory of Feynman Path Integrals by : Sergio A. Albeverio

Download or read book Mathematical Theory of Feynman Path Integrals written by Sergio A. Albeverio and published by Springer. This book was released on 2006-11-14 with total page 143 pages. Available in PDF, EPUB and Kindle. Book excerpt: Feynman path integrals integrals, suggested heuristically by Feynman in the 40s, have become the basis of much of contemporary physics, from non relativistic quantum mechanics to quantum fields, including gauge fields, gravitation, cosmology. Recently ideas based on Feynman path integrals have also played an important role in areas of mathematics like low dimensional topology and differential geometry, algebraic geometry, infinite dimensional analysis and geometry, and number theory. The 2nd edition of LNM 523 is based on the two first authors' mathematical approach of this theory presented in its 1st edition in 1976. To take care of the many developments which have occurred since then, an entire new chapter about the current forefront of research has been added. Except for this new chapter, the basic material and presentation of the first edition was mantained, a few misprints have been corrected. At the end of each chapter the reader will also find notes with further bibliographical information.

Mathematical Feynman Path Integrals And Their Applications

Download Mathematical Feynman Path Integrals And Their Applications PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9814469270
Total Pages : 225 pages
Book Rating : 4.8/5 (144 download)

DOWNLOAD NOW!


Book Synopsis Mathematical Feynman Path Integrals And Their Applications by : Sonia Mazzucchi

Download or read book Mathematical Feynman Path Integrals And Their Applications written by Sonia Mazzucchi and published by World Scientific. This book was released on 2009-05-22 with total page 225 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although more than 60 years have passed since their first appearance, Feynman path integrals have yet to lose their fascination and luster. They are not only a formidable instrument of theoretical physics, but also a mathematical challenge; in fact, several mathematicians in the last 40 years have devoted their efforts to the rigorous mathematical definition of Feynman's ideas.This volume provides a detailed, self-contained description of the mathematical difficulties as well as the possible techniques used to solve these difficulties. In particular, it gives a complete overview of the mathematical realization of Feynman path integrals in terms of well-defined functional integrals, that is, the infinite dimensional oscillatory integrals. It contains the traditional results on the topic as well as the more recent developments obtained by the author.Mathematical Feynman Path Integrals and Their Applications is devoted to both mathematicians and physicists, graduate students and researchers who are interested in the problem of mathematical foundations of Feynman path integrals.

Multidimensional Stochastic Processes as Rough Paths

Download Multidimensional Stochastic Processes as Rough Paths PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521876070
Total Pages : 670 pages
Book Rating : 4.8/5 (76 download)

DOWNLOAD NOW!


Book Synopsis Multidimensional Stochastic Processes as Rough Paths by : Peter K. Friz

Download or read book Multidimensional Stochastic Processes as Rough Paths written by Peter K. Friz and published by Cambridge University Press. This book was released on 2010-02-04 with total page 670 pages. Available in PDF, EPUB and Kindle. Book excerpt: Rough path analysis provides a fresh perspective on Ito's important theory of stochastic differential equations. Key theorems of modern stochastic analysis (existence and limit theorems for stochastic flows, Freidlin-Wentzell theory, the Stroock-Varadhan support description) can be obtained with dramatic simplifications. Classical approximation results and their limitations (Wong-Zakai, McShane's counterexample) receive 'obvious' rough path explanations. Evidence is building that rough paths will play an important role in the future analysis of stochastic partial differential equations and the authors include some first results in this direction. They also emphasize interactions with other parts of mathematics, including Caratheodory geometry, Dirichlet forms and Malliavin calculus. Based on successful courses at the graduate level, this up-to-date introduction presents the theory of rough paths and its applications to stochastic analysis. Examples, explanations and exercises make the book accessible to graduate students and researchers from a variety of fields.

Stochastic Processes in Cell Biology

Download Stochastic Processes in Cell Biology PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030725154
Total Pages : 773 pages
Book Rating : 4.0/5 (37 download)

DOWNLOAD NOW!


Book Synopsis Stochastic Processes in Cell Biology by : Paul C. Bressloff

Download or read book Stochastic Processes in Cell Biology written by Paul C. Bressloff and published by Springer Nature. This book was released on 2022-01-04 with total page 773 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book develops the theory of continuous and discrete stochastic processes within the context of cell biology. In the second edition the material has been significantly expanded, particularly within the context of nonequilibrium and self-organizing systems. Given the amount of additional material, the book has been divided into two volumes, with volume I mainly covering molecular processes and volume II focusing on cellular processes. A wide range of biological topics are covered in the new edition, including stochastic ion channels and excitable systems, molecular motors, stochastic gene networks, genetic switches and oscillators, epigenetics, normal and anomalous diffusion in complex cellular environments, stochastically-gated diffusion, active intracellular transport, signal transduction, cell sensing, bacterial chemotaxis, intracellular pattern formation, cell polarization, cell mechanics, biological polymers and membranes, nuclear structure and dynamics, biological condensates, molecular aggregation and nucleation, cellular length control, cell mitosis, cell motility, cell adhesion, cytoneme-based morphogenesis, bacterial growth, and quorum sensing. The book also provides a pedagogical introduction to the theory of stochastic and nonequilibrium processes – Fokker Planck equations, stochastic differential equations, stochastic calculus, master equations and jump Markov processes, birth-death processes, Poisson processes, first passage time problems, stochastic hybrid systems, queuing and renewal theory, narrow capture and escape, extreme statistics, search processes and stochastic resetting, exclusion processes, WKB methods, large deviation theory, path integrals, martingales and branching processes, numerical methods, linear response theory, phase separation, fluctuation-dissipation theorems, age-structured models, and statistical field theory. This text is primarily aimed at graduate students and researchers working in mathematical biology, statistical and biological physicists, and applied mathematicians interested in stochastic modeling. Applied probabilists should also find it of interest. It provides significant background material in applied mathematics and statistical physics, and introduces concepts in stochastic and nonequilibrium processes via motivating biological applications. The book is highly illustrated and contains a large number of examples and exercises that further develop the models and ideas in the body of the text. It is based on a course that the author has taught at the University of Utah for many years.

The Fokker-Planck Equation

Download The Fokker-Planck Equation PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642615449
Total Pages : 486 pages
Book Rating : 4.6/5 (426 download)

DOWNLOAD NOW!


Book Synopsis The Fokker-Planck Equation by : Hannes Risken

Download or read book The Fokker-Planck Equation written by Hannes Risken and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 486 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first textbook to include the matrix continued-fraction method, which is very effective in dealing with simple Fokker-Planck equations having two variables. Other methods covered are the simulation method, the eigen-function expansion, numerical integration, and the variational method. Each solution is applied to the statistics of a simple laser model and to Brownian motion in potentials. The whole is rounded off with a supplement containing a short review of new material together with some recent references. This new study edition will prove to be very useful for graduate students in physics, chemical physics, and electrical engineering, as well as for research workers in these fields.

Applied Stochastic Differential Equations

Download Applied Stochastic Differential Equations PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1316510085
Total Pages : 327 pages
Book Rating : 4.3/5 (165 download)

DOWNLOAD NOW!


Book Synopsis Applied Stochastic Differential Equations by : Simo Särkkä

Download or read book Applied Stochastic Differential Equations written by Simo Särkkä and published by Cambridge University Press. This book was released on 2019-05-02 with total page 327 pages. Available in PDF, EPUB and Kindle. Book excerpt: With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.

Introduction to Stochastic Integration

Download Introduction to Stochastic Integration PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387310576
Total Pages : 290 pages
Book Rating : 4.3/5 (873 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Stochastic Integration by : Hui-Hsiung Kuo

Download or read book Introduction to Stochastic Integration written by Hui-Hsiung Kuo and published by Springer Science & Business Media. This book was released on 2006-02-04 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: Also called Ito calculus, the theory of stochastic integration has applications in virtually every scientific area involving random functions. This introductory textbook provides a concise introduction to the Ito calculus. From the reviews: "Introduction to Stochastic Integration is exactly what the title says. I would maybe just add a ‘friendly’ introduction because of the clear presentation and flow of the contents." --THE MATHEMATICAL SCIENCES DIGITAL LIBRARY

Path Integrals and Hamiltonians

Download Path Integrals and Hamiltonians PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1139867334
Total Pages : 437 pages
Book Rating : 4.1/5 (398 download)

DOWNLOAD NOW!


Book Synopsis Path Integrals and Hamiltonians by : Belal E. Baaquie

Download or read book Path Integrals and Hamiltonians written by Belal E. Baaquie and published by Cambridge University Press. This book was released on 2014-03-27 with total page 437 pages. Available in PDF, EPUB and Kindle. Book excerpt: Providing a pedagogical introduction to the essential principles of path integrals and Hamiltonians, this book describes cutting-edge quantum mathematical techniques applicable to a vast range of fields, from quantum mechanics, solid state physics, statistical mechanics, quantum field theory, and superstring theory to financial modeling, polymers, biology, chemistry, and quantum finance. Eschewing use of the Schrödinger equation, the powerful and flexible combination of Hamiltonian operators and path integrals is used to study a range of different quantum and classical random systems, succinctly demonstrating the interplay between a system's path integral, state space, and Hamiltonian. With a practical emphasis on the methodological and mathematical aspects of each derivation, this is a perfect introduction to these versatile mathematical methods, suitable for researchers and graduate students in physics and engineering.

Gender Through the Prism of Difference

Download Gender Through the Prism of Difference PDF Online Free

Author :
Publisher : Prentice Hall
ISBN 13 :
Total Pages : 550 pages
Book Rating : 4.X/5 (4 download)

DOWNLOAD NOW!


Book Synopsis Gender Through the Prism of Difference by : Maxine Baca Zinn

Download or read book Gender Through the Prism of Difference written by Maxine Baca Zinn and published by Prentice Hall. This book was released on 2000 with total page 550 pages. Available in PDF, EPUB and Kindle. Book excerpt: This engaging collection of readings presents a multifaceted view of contemporary gender relations. Using other inequalities such as race, class, and sexual orientation as a prism of difference, the readings present gender as it is situated in sexual, racial-ethnic, social class, physical abilities, age, and national citizenship contexts. In addition to articles about men, women, and sexual, and immigrant diversity, this reader also includes works on gender and globalization. The editors introduce this wide-ranging collection with a provocative analytical introduction that sets the stage for understanding gender as a socially constructed experience. Takes a sociological perspective on contemporary gender relations. Emphasizes the theme of difference or how other inequalities such as race, class, or age affect our gendered experiences. Presents a discussion of women's and men's issues. Includes articles on international and transnational factors in addition to the articles on U.S. gender relations. For anyone interested in Sociology of Gender, Women's Studies, Gender Roles, Sociology of Women, Women in Society, Race, Class, and Gender, Diversity, Feminist Theory, and Social Inequality.

Stochastic Processes for Physicists

Download Stochastic Processes for Physicists PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1139486799
Total Pages : 203 pages
Book Rating : 4.1/5 (394 download)

DOWNLOAD NOW!


Book Synopsis Stochastic Processes for Physicists by : Kurt Jacobs

Download or read book Stochastic Processes for Physicists written by Kurt Jacobs and published by Cambridge University Press. This book was released on 2010-02-18 with total page 203 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic processes are an essential part of numerous branches of physics, as well as in biology, chemistry, and finance. This textbook provides a solid understanding of stochastic processes and stochastic calculus in physics, without the need for measure theory. In avoiding measure theory, this textbook gives readers the tools necessary to use stochastic methods in research with a minimum of mathematical background. Coverage of the more exotic Levy processes is included, as is a concise account of numerical methods for simulating stochastic systems driven by Gaussian noise. The book concludes with a non-technical introduction to the concepts and jargon of measure-theoretic probability theory. With over 70 exercises, this textbook is an easily accessible introduction to stochastic processes and their applications, as well as methods for numerical simulation, for graduate students and researchers in physics.

Lévy Processes and Stochastic Calculus

Download Lévy Processes and Stochastic Calculus PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1139477986
Total Pages : 461 pages
Book Rating : 4.1/5 (394 download)

DOWNLOAD NOW!


Book Synopsis Lévy Processes and Stochastic Calculus by : David Applebaum

Download or read book Lévy Processes and Stochastic Calculus written by David Applebaum and published by Cambridge University Press. This book was released on 2009-04-30 with total page 461 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lévy processes form a wide and rich class of random process, and have many applications ranging from physics to finance. Stochastic calculus is the mathematics of systems interacting with random noise. Here, the author ties these two subjects together, beginning with an introduction to the general theory of Lévy processes, then leading on to develop the stochastic calculus for Lévy processes in a direct and accessible way. This fully revised edition now features a number of new topics. These include: regular variation and subexponential distributions; necessary and sufficient conditions for Lévy processes to have finite moments; characterisation of Lévy processes with finite variation; Kunita's estimates for moments of Lévy type stochastic integrals; new proofs of Ito representation and martingale representation theorems for general Lévy processes; multiple Wiener-Lévy integrals and chaos decomposition; an introduction to Malliavin calculus; an introduction to stability theory for Lévy-driven SDEs.