Partial Differential Equations in Classical Mathematical Physics

Download Partial Differential Equations in Classical Mathematical Physics PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521558464
Total Pages : 704 pages
Book Rating : 4.5/5 (584 download)

DOWNLOAD NOW!


Book Synopsis Partial Differential Equations in Classical Mathematical Physics by : Isaak Rubinstein

Download or read book Partial Differential Equations in Classical Mathematical Physics written by Isaak Rubinstein and published by Cambridge University Press. This book was released on 1998-04-28 with total page 704 pages. Available in PDF, EPUB and Kindle. Book excerpt: The unique feature of this book is that it considers the theory of partial differential equations in mathematical physics as the language of continuous processes, that is, as an interdisciplinary science that treats the hierarchy of mathematical phenomena as reflections of their physical counterparts. Special attention is drawn to tracing the development of these mathematical phenomena in different natural sciences, with examples drawn from continuum mechanics, electrodynamics, transport phenomena, thermodynamics, and chemical kinetics. At the same time, the authors trace the interrelation between the different types of problems - elliptic, parabolic, and hyperbolic - as the mathematical counterparts of stationary and evolutionary processes. This combination of mathematical comprehensiveness and natural scientific motivation represents a step forward in the presentation of the classical theory of PDEs, one that will be appreciated by both students and researchers alike.

Partial Differential Equations of Mathematical Physics

Download Partial Differential Equations of Mathematical Physics PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 9780486659640
Total Pages : 452 pages
Book Rating : 4.6/5 (596 download)

DOWNLOAD NOW!


Book Synopsis Partial Differential Equations of Mathematical Physics by : S. L. Sobolev

Download or read book Partial Differential Equations of Mathematical Physics written by S. L. Sobolev and published by Courier Corporation. This book was released on 1964-01-01 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents an unusually accessible introduction to equations fundamental to the investigation of waves, heat conduction, hydrodynamics, and other physical problems. Topics include derivation of fundamental equations, Riemann method, equation of heat conduction, theory of integral equations, Green's function, and much more. The only prerequisite is a familiarity with elementary analysis. 1964 edition.

Mathematical Physics with Partial Differential Equations

Download Mathematical Physics with Partial Differential Equations PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0123869110
Total Pages : 431 pages
Book Rating : 4.1/5 (238 download)

DOWNLOAD NOW!


Book Synopsis Mathematical Physics with Partial Differential Equations by : James Kirkwood

Download or read book Mathematical Physics with Partial Differential Equations written by James Kirkwood and published by Academic Press. This book was released on 2012-01-20 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: Suitable for advanced undergraduate and beginning graduate students taking a course on mathematical physics, this title presents some of the most important topics and methods of mathematical physics. It contains mathematical derivations and solutions - reinforcing the material through repetition of both the equations and the techniques.

Partial Differential Equations for Mathematical Physicists

Download Partial Differential Equations for Mathematical Physicists PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000300811
Total Pages : 227 pages
Book Rating : 4.0/5 (3 download)

DOWNLOAD NOW!


Book Synopsis Partial Differential Equations for Mathematical Physicists by : Bijan Kumar Bagchi

Download or read book Partial Differential Equations for Mathematical Physicists written by Bijan Kumar Bagchi and published by CRC Press. This book was released on 2019-07-02 with total page 227 pages. Available in PDF, EPUB and Kindle. Book excerpt: Partial Differential Equations for Mathematical Physicists is intended for graduate students, researchers of theoretical physics and applied mathematics, and professionals who want to take a course in partial differential equations. This book offers the essentials of the subject with the prerequisite being only an elementary knowledge of introductory calculus, ordinary differential equations, and certain aspects of classical mechanics. We have stressed more the methodologies of partial differential equations and how they can be implemented as tools for extracting their solutions rather than dwelling on the foundational aspects. After covering some basic material, the book proceeds to focus mostly on the three main types of second order linear equations, namely those belonging to the elliptic, hyperbolic, and parabolic classes. For such equations a detailed treatment is given of the derivation of Green's functions, and of the roles of characteristics and techniques required in handling the solutions with the expected amount of rigor. In this regard we have discussed at length the method of separation variables, application of Green's function technique, and employment of Fourier and Laplace's transforms. Also collected in the appendices are some useful results from the Dirac delta function, Fourier transform, and Laplace transform meant to be used as supplementary materials to the text. A good number of problems is worked out and an equally large number of exercises has been appended at the end of each chapter keeping in mind the needs of the students. It is expected that this book will provide a systematic and unitary coverage of the basics of partial differential equations. Key Features An adequate and substantive exposition of the subject. Covers a wide range of important topics. Maintains mathematical rigor throughout. Organizes materials in a self-contained way with each chapter ending with a summary. Contains a large number of worked out problems.

Foundations of the Classical Theory of Partial Differential Equations

Download Foundations of the Classical Theory of Partial Differential Equations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642580939
Total Pages : 264 pages
Book Rating : 4.6/5 (425 download)

DOWNLOAD NOW!


Book Synopsis Foundations of the Classical Theory of Partial Differential Equations by : Yu.V. Egorov

Download or read book Foundations of the Classical Theory of Partial Differential Equations written by Yu.V. Egorov and published by Springer Science & Business Media. This book was released on 2013-12-01 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the reviews: "...I think the volume is a great success ... a welcome addition to the literature ..." The Mathematical Intelligencer, 1993 "... It is comparable in scope with the great Courant-Hilbert Methods of Mathematical Physics, but it is much shorter, more up to date of course, and contains more elaborate analytical machinery...." The Mathematical Gazette, 1993

Partial Differential Equations

Download Partial Differential Equations PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0470054565
Total Pages : 467 pages
Book Rating : 4.4/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Partial Differential Equations by : Walter A. Strauss

Download or read book Partial Differential Equations written by Walter A. Strauss and published by John Wiley & Sons. This book was released on 2007-12-21 with total page 467 pages. Available in PDF, EPUB and Kindle. Book excerpt: Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.

Principles of Partial Differential Equations

Download Principles of Partial Differential Equations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1441910956
Total Pages : 165 pages
Book Rating : 4.4/5 (419 download)

DOWNLOAD NOW!


Book Synopsis Principles of Partial Differential Equations by : Alexander Komech

Download or read book Principles of Partial Differential Equations written by Alexander Komech and published by Springer Science & Business Media. This book was released on 2009-10-05 with total page 165 pages. Available in PDF, EPUB and Kindle. Book excerpt: This concise book covers the classical tools of Partial Differential Equations Theory in today’s science and engineering. The rigorous theoretical presentation includes many hints, and the book contains many illustrative applications from physics.

Partial Differential Equations III

Download Partial Differential Equations III PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1441970495
Total Pages : 734 pages
Book Rating : 4.4/5 (419 download)

DOWNLOAD NOW!


Book Synopsis Partial Differential Equations III by : Michael E. Taylor

Download or read book Partial Differential Equations III written by Michael E. Taylor and published by Springer Science & Business Media. This book was released on 2010-11-02 with total page 734 pages. Available in PDF, EPUB and Kindle. Book excerpt: The third of three volumes on partial differential equations, this is devoted to nonlinear PDE. It treats a number of equations of classical continuum mechanics, including relativistic versions, as well as various equations arising in differential geometry, such as in the study of minimal surfaces, isometric imbedding, conformal deformation, harmonic maps, and prescribed Gauss curvature. In addition, some nonlinear diffusion problems are studied. It also introduces such analytical tools as the theory of L Sobolev spaces, H lder spaces, Hardy spaces, and Morrey spaces, and also a development of Calderon-Zygmund theory and paradifferential operator calculus. The book is aimed at graduate students in mathematics, and at professional mathematicians with an interest in partial differential equations, mathematical physics, differential geometry, harmonic analysis and complex analysis

Partial Differential Equations

Download Partial Differential Equations PDF Online Free

Author :
Publisher : Walton Press
ISBN 13 : 1443726702
Total Pages : 556 pages
Book Rating : 4.4/5 (437 download)

DOWNLOAD NOW!


Book Synopsis Partial Differential Equations by : H. Bateman

Download or read book Partial Differential Equations written by H. Bateman and published by Walton Press. This book was released on 2008-11 with total page 556 pages. Available in PDF, EPUB and Kindle. Book excerpt: PARTIAL DIFFERENTIAL EQUATIONS OF MATHEMATICAL PHYSICS BY H. BAT EM AN, M. A., PH. D. Late Fellow of Trinity College, Cambridge Professor of Mathematics, Theoretical Physics and Aeronautics, California Institute of Technology, Pasadena, California NEW YORK DOVER PUBLICATIONS 1944 First Edition 1932 First American Edition 1944 By special arrangement with the Cambridge University Press and The Macmillan Co. Printed in the U. S. A. Dedicated to MY MOTHER CONTENTS PREFACE page xiii INTRODUCTION xv-xxii CHAPTER I THE CLASSICAL EQUATIONS 1-11-1-14. Uniform motion, boundary conditions, problems, a passage to the limit. 1-7 1-15-1-19. Fouriers theorem, Fourier constants, Cesaros method of summation, Parsevals theorem, Fourier series, the expansion of the integral of a bounded function which is continuous bit by bit. . 7-16 1-21-1-25. The bending of a beam, the Greens function, the equation of three moments, stability of a strut, end conditions, examples. 16-25 1 31-1-36. F ee undamped vibrations, simple periodic motion, simultaneous linear equations, the Lagrangian equations of motion, normal vibrations, com pound pendulum, quadratic forms, Hermit ian forms, examples. 25-40 1-41-1 - 42. Forced oscillations, residual oscillation, examples. 40-44 1-43. Motion with a resistance proportional to the velocity, reduction to alge braic equations. 44 d7 1-44. The equation of damped vibrations, instrumental records. 47-52 1-45-1 - 46. The dissipation function, reciprocal relations. 52-54 1-47-1-49. Fundamental equations of electric circuit theory, Cauchys method of solving a linear equation, Heavisides expansion. 54-6Q 1-51 1-56. The simple wave-equation, wave propagation, associated equations, transmission of vibrations, vibration of a building, vibration of a string, torsional oscillations of a rod, plane waves of sound, waves in a canal, examples. 60-73 1-61-1 - 63. Conjugate functions and systems of partial differential equations, the telegraphic equation, partial difference equations, simultaneous equations involving high derivatives, examplu. 73-77 1-71-1-72. Potentials and stream-functions, motion of a fluid, sources and vortices, two-dimensional stresses, geometrical properties of equipotentials and lines of force, method of inversion, examples. 77-90 1-81-1-82. The classical partial differential equations for Euclidean space, Laplaces equation, systems of partial differential equations of the first order fchich lead to the classical equations, elastic equilibrium, equations leading to the uations of wave-motion, 90-95 S 1 91. Primary solutions, Jacobis theorem, examples. 95-100 1 92. The partial differential equation of the characteristics, bicharacteristics and rays. 101-105 1 93-1 94. Primary solutions of the second grade, primitive solutions of the wave-equation, primitive solutions of Laplaces equation. 105-111 1-95. Fundamental solutions, examples. 111-114 viii Contents CHAPTER n APPLICATIONS OF THE INTEGRAL THEOREMS OF GREEN AND STOKES 2 11-2-12. Greens theorem, Stokes s theorem, curl of a vector, velocity potentials, equation of continuity. pages 116-118 2-13-2-16. The equation of the conduction of heat, diffusion, the drying of wood, the heating of a porous body by a warm fluid, Laplaces method, example. 118-125 2-21-2 22. Riemanns method, modified equation of diffusion, Greens func tions, examples. 126-131 f 2-23-2 26. Green s theorem for a general lineardifferential equation of the second order, characteristics, classification of partial differential equations of the second order, a property of equations of elliptic type, maxima and minima of solutions. 131-138 2-31-2-32. Greens theorem for Laplaces equation, Greens functions, reciprocal relations. 138-144 2-33-2-34. Partial difference equations, associated quadratic form, the limiting process, inequalities, properties of the limit function. 144-152 2-41-2-42...

Partial Differential Equations

Download Partial Differential Equations PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821849743
Total Pages : 778 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Partial Differential Equations by : Lawrence C. Evans

Download or read book Partial Differential Equations written by Lawrence C. Evans and published by American Mathematical Soc.. This book was released on 2010 with total page 778 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the second edition of the now definitive text on partial differential equations (PDE). It offers a comprehensive survey of modern techniques in the theoretical study of PDE with particular emphasis on nonlinear equations. Its wide scope and clear exposition make it a great text for a graduate course in PDE. For this edition, the author has made numerous changes, including a new chapter on nonlinear wave equations, more than 80 new exercises, several new sections, a significantly expanded bibliography. About the First Edition: I have used this book for both regular PDE and topics courses. It has a wonderful combination of insight and technical detail...Evans' book is evidence of his mastering of the field and the clarity of presentation (Luis Caffarelli, University of Texas) It is fun to teach from Evans' book. It explains many of the essential ideas and techniques of partial differential equations ...Every graduate student in analysis should read it. (David Jerison, MIT) I use Partial Differential Equations to prepare my students for their Topic exam, which is a requirement before starting working on their dissertation. The book provides an excellent account of PDE's ...I am very happy with the preparation it provides my students. (Carlos Kenig, University of Chicago) Evans' book has already attained the status of a classic. It is a clear choice for students just learning the subject, as well as for experts who wish to broaden their knowledge ...An outstanding reference for many aspects of the field. (Rafe Mazzeo, Stanford University.

The Action Principle and Partial Differential Equations

Download The Action Principle and Partial Differential Equations PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 9780691049571
Total Pages : 332 pages
Book Rating : 4.0/5 (495 download)

DOWNLOAD NOW!


Book Synopsis The Action Principle and Partial Differential Equations by : Demetrios Christodoulou

Download or read book The Action Principle and Partial Differential Equations written by Demetrios Christodoulou and published by Princeton University Press. This book was released on 2000-01-17 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces new methods in the theory of partial differential equations derivable from a Lagrangian. These methods constitute, in part, an extension to partial differential equations of the methods of symplectic geometry and Hamilton-Jacobi theory for Lagrangian systems of ordinary differential equations. A distinguishing characteristic of this approach is that one considers, at once, entire families of solutions of the Euler-Lagrange equations, rather than restricting attention to single solutions at a time. The second part of the book develops a general theory of integral identities, the theory of "compatible currents," which extends the work of E. Noether. Finally, the third part introduces a new general definition of hyperbolicity, based on a quadratic form associated with the Lagrangian, which overcomes the obstacles arising from singularities of the characteristic variety that were encountered in previous approaches. On the basis of the new definition, the domain-of-dependence theorem and stability properties of solutions are derived. Applications to continuum mechanics are discussed throughout the book. The last chapter is devoted to the electrodynamics of nonlinear continuous media.

Mathematics of Classical and Quantum Physics

Download Mathematics of Classical and Quantum Physics PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 0486135063
Total Pages : 674 pages
Book Rating : 4.4/5 (861 download)

DOWNLOAD NOW!


Book Synopsis Mathematics of Classical and Quantum Physics by : Frederick W. Byron

Download or read book Mathematics of Classical and Quantum Physics written by Frederick W. Byron and published by Courier Corporation. This book was released on 2012-04-26 with total page 674 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graduate-level text offers unified treatment of mathematics applicable to many branches of physics. Theory of vector spaces, analytic function theory, theory of integral equations, group theory, and more. Many problems. Bibliography.

Kernel Functions and Elliptic Differential Equations in Mathematical Physics

Download Kernel Functions and Elliptic Differential Equations in Mathematical Physics PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 0486445534
Total Pages : 450 pages
Book Rating : 4.4/5 (864 download)

DOWNLOAD NOW!


Book Synopsis Kernel Functions and Elliptic Differential Equations in Mathematical Physics by : Stefan Bergman

Download or read book Kernel Functions and Elliptic Differential Equations in Mathematical Physics written by Stefan Bergman and published by Courier Corporation. This book was released on 2005-09-01 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text focuses on the theory of boundary value problems in partial differential equations, which plays a central role in various fields of pure and applied mathematics, theoretical physics, and engineering. Geared toward upper-level undergraduates and graduate students, it discusses a portion of the theory from a unifying point of view and provides a systematic and self-contained introduction to each branch of the applications it employs.

A Primer for a Secret Shortcut to PDEs of Mathematical Physics

Download A Primer for a Secret Shortcut to PDEs of Mathematical Physics PDF Online Free

Author :
Publisher : Birkhäuser
ISBN 13 : 9783030473327
Total Pages : 183 pages
Book Rating : 4.4/5 (733 download)

DOWNLOAD NOW!


Book Synopsis A Primer for a Secret Shortcut to PDEs of Mathematical Physics by : Des McGhee

Download or read book A Primer for a Secret Shortcut to PDEs of Mathematical Physics written by Des McGhee and published by Birkhäuser. This book was released on 2020-10-20 with total page 183 pages. Available in PDF, EPUB and Kindle. Book excerpt: ​This book presents a concise introduction to a unified Hilbert space approach to the mathematical modelling of physical phenomena which has been developed over recent years by Picard and his co-workers. The main focus is on time-dependent partial differential equations with a particular structure in the Hilbert space setting that ensures well-posedness and causality, two essential properties of any reasonable model in mathematical physics or engineering.However, the application of the theory to other types of equations is also demonstrated. By means of illustrative examples, from the straightforward to the more complex, the authors show that many of the classical models in mathematical physics as well as more recent models of novel materials and interactions are covered, or can be restructured to be covered, by this unified Hilbert space approach. The reader should require only a basic foundation in the theory of Hilbert spaces and operators therein. For convenience, however, some of the more technical background requirements are covered in detail in two appendices The theory is kept as elementary as possible, making the material suitable for a senior undergraduate or master’s level course. In addition, researchers in a variety of fields whose work involves partial differential equations and applied operator theory will also greatly benefit from this approach to structuring their mathematical models in order that the general theory can be applied to ensure the essential properties of well-posedness and causality.

Equations of Mathematical Physics

Download Equations of Mathematical Physics PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 0486173364
Total Pages : 802 pages
Book Rating : 4.4/5 (861 download)

DOWNLOAD NOW!


Book Synopsis Equations of Mathematical Physics by : A. N. Tikhonov

Download or read book Equations of Mathematical Physics written by A. N. Tikhonov and published by Courier Corporation. This book was released on 2013-09-16 with total page 802 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical physics plays an important role in the study of many physical processes — hydrodynamics, elasticity, and electrodynamics, to name just a few. Because of the enormous range and variety of problems dealt with by mathematical physics, this thorough advanced undergraduate- or graduate-level text considers only those problems leading to partial differential equations. Contents: I. Classification of Partial Differential Equations II. Evaluations of the Hyperbolic Type III. Equations of the Parabolic Type IV. Equations of Elliptic Type V. Wave Propagation in Space VI. Heat Conduction in Space VII. Equations of Elliptic Type (Continuation) The authors — two well-known Russian mathematicians — have focused on typical physical processes and the principal types of equations dealing with them. Special attention is paid throughout to mathematical formulation, rigorous solutions, and physical interpretation of the results obtained. Carefully chosen problems designed to promote technical skills are contained in each chapter, along with extremely useful appendixes that supply applications of solution methods described in the main text. At the end of the book, a helpful supplement discusses special functions, including spherical and cylindrical functions.

Methods of Mathematical Physics

Download Methods of Mathematical Physics PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 830 pages
Book Rating : 4.:/5 (851 download)

DOWNLOAD NOW!


Book Synopsis Methods of Mathematical Physics by : Richard Courant

Download or read book Methods of Mathematical Physics written by Richard Courant and published by . This book was released on 1965 with total page 830 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Equations in Mathematical Physics

Download Equations in Mathematical Physics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3034802684
Total Pages : 215 pages
Book Rating : 4.0/5 (348 download)

DOWNLOAD NOW!


Book Synopsis Equations in Mathematical Physics by : Victor P. Pikulin

Download or read book Equations in Mathematical Physics written by Victor P. Pikulin and published by Springer Science & Business Media. This book was released on 2012-01-03 with total page 215 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many physical processes in fields such as mechanics, thermodynamics, electricity, magnetism or optics are described by means of partial differential equations. The aim of the present book is to demontstrate the basic methods for solving the classical linear problems in mathematical physics of elliptic, parabolic and hyperbolic type. In particular, the methods of conformal mappings, Fourier analysis and Green`s functions are considered, as well as the perturbation method and integral transformation method, among others. Every chapter contains concrete examples with a detailed analysis of their solution.The book is intended as a textbook for students in mathematical physics, but will also serve as a handbook for scientists and engineers.