Handbook of Approximate Bayesian Computation

Download Handbook of Approximate Bayesian Computation PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1351643460
Total Pages : 513 pages
Book Rating : 4.3/5 (516 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Approximate Bayesian Computation by : Scott A. Sisson

Download or read book Handbook of Approximate Bayesian Computation written by Scott A. Sisson and published by CRC Press. This book was released on 2018-09-03 with total page 513 pages. Available in PDF, EPUB and Kindle. Book excerpt: As the world becomes increasingly complex, so do the statistical models required to analyse the challenging problems ahead. For the very first time in a single volume, the Handbook of Approximate Bayesian Computation (ABC) presents an extensive overview of the theory, practice and application of ABC methods. These simple, but powerful statistical techniques, take Bayesian statistics beyond the need to specify overly simplified models, to the setting where the model is defined only as a process that generates data. This process can be arbitrarily complex, to the point where standard Bayesian techniques based on working with tractable likelihood functions would not be viable. ABC methods finesse the problem of model complexity within the Bayesian framework by exploiting modern computational power, thereby permitting approximate Bayesian analyses of models that would otherwise be impossible to implement. The Handbook of ABC provides illuminating insight into the world of Bayesian modelling for intractable models for both experts and newcomers alike. It is an essential reference book for anyone interested in learning about and implementing ABC techniques to analyse complex models in the modern world.

Parameter Estimation in Stochastic Volatility Models

Download Parameter Estimation in Stochastic Volatility Models PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031038614
Total Pages : 634 pages
Book Rating : 4.0/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Parameter Estimation in Stochastic Volatility Models by : Jaya P. N. Bishwal

Download or read book Parameter Estimation in Stochastic Volatility Models written by Jaya P. N. Bishwal and published by Springer Nature. This book was released on 2022-08-06 with total page 634 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book develops alternative methods to estimate the unknown parameters in stochastic volatility models, offering a new approach to test model accuracy. While there is ample research to document stochastic differential equation models driven by Brownian motion based on discrete observations of the underlying diffusion process, these traditional methods often fail to estimate the unknown parameters in the unobserved volatility processes. This text studies the second order rate of weak convergence to normality to obtain refined inference results like confidence interval, as well as nontraditional continuous time stochastic volatility models driven by fractional Levy processes. By incorporating jumps and long memory into the volatility process, these new methods will help better predict option pricing and stock market crash risk. Some simulation algorithms for numerical experiments are provided.

Stochastic Volatility

Download Stochastic Volatility PDF Online Free

Author :
Publisher : Oxford University Press, USA
ISBN 13 : 0199257205
Total Pages : 534 pages
Book Rating : 4.1/5 (992 download)

DOWNLOAD NOW!


Book Synopsis Stochastic Volatility by : Neil Shephard

Download or read book Stochastic Volatility written by Neil Shephard and published by Oxford University Press, USA. This book was released on 2005 with total page 534 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic volatility is the main concept used in the fields of financial economics and mathematical finance to deal with time-varying volatility in financial markets. This work brings together some of the main papers that have influenced this field, andshows that the development of this subject has been highly multidisciplinary.

Handbook of Financial Time Series

Download Handbook of Financial Time Series PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540712976
Total Pages : 1045 pages
Book Rating : 4.5/5 (47 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Financial Time Series by : Torben Gustav Andersen

Download or read book Handbook of Financial Time Series written by Torben Gustav Andersen and published by Springer Science & Business Media. This book was released on 2009-04-21 with total page 1045 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook of Financial Time Series gives an up-to-date overview of the field and covers all relevant topics both from a statistical and an econometrical point of view. There are many fine contributions, and a preamble by Nobel Prize winner Robert F. Engle.

Sequential Monte Carlo Methods in Practice

Download Sequential Monte Carlo Methods in Practice PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1475734379
Total Pages : 590 pages
Book Rating : 4.4/5 (757 download)

DOWNLOAD NOW!


Book Synopsis Sequential Monte Carlo Methods in Practice by : Arnaud Doucet

Download or read book Sequential Monte Carlo Methods in Practice written by Arnaud Doucet and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 590 pages. Available in PDF, EPUB and Kindle. Book excerpt: Monte Carlo methods are revolutionizing the on-line analysis of data in many fileds. They have made it possible to solve numerically many complex, non-standard problems that were previously intractable. This book presents the first comprehensive treatment of these techniques.

Handbook of Approximate Bayesian Computation

Download Handbook of Approximate Bayesian Computation PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1439881510
Total Pages : 679 pages
Book Rating : 4.4/5 (398 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Approximate Bayesian Computation by : Scott A. Sisson

Download or read book Handbook of Approximate Bayesian Computation written by Scott A. Sisson and published by CRC Press. This book was released on 2018-09-03 with total page 679 pages. Available in PDF, EPUB and Kindle. Book excerpt: As the world becomes increasingly complex, so do the statistical models required to analyse the challenging problems ahead. For the very first time in a single volume, the Handbook of Approximate Bayesian Computation (ABC) presents an extensive overview of the theory, practice and application of ABC methods. These simple, but powerful statistical techniques, take Bayesian statistics beyond the need to specify overly simplified models, to the setting where the model is defined only as a process that generates data. This process can be arbitrarily complex, to the point where standard Bayesian techniques based on working with tractable likelihood functions would not be viable. ABC methods finesse the problem of model complexity within the Bayesian framework by exploiting modern computational power, thereby permitting approximate Bayesian analyses of models that would otherwise be impossible to implement. The Handbook of ABC provides illuminating insight into the world of Bayesian modelling for intractable models for both experts and newcomers alike. It is an essential reference book for anyone interested in learning about and implementing ABC techniques to analyse complex models in the modern world.

Applied Stochastic Differential Equations

Download Applied Stochastic Differential Equations PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1316510085
Total Pages : 327 pages
Book Rating : 4.3/5 (165 download)

DOWNLOAD NOW!


Book Synopsis Applied Stochastic Differential Equations by : Simo Särkkä

Download or read book Applied Stochastic Differential Equations written by Simo Särkkä and published by Cambridge University Press. This book was released on 2019-05-02 with total page 327 pages. Available in PDF, EPUB and Kindle. Book excerpt: With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.

Parameter Estimation in Stochastic Differential Equations

Download Parameter Estimation in Stochastic Differential Equations PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540744487
Total Pages : 271 pages
Book Rating : 4.5/5 (47 download)

DOWNLOAD NOW!


Book Synopsis Parameter Estimation in Stochastic Differential Equations by : Jaya P. N. Bishwal

Download or read book Parameter Estimation in Stochastic Differential Equations written by Jaya P. N. Bishwal and published by Springer. This book was released on 2007-09-26 with total page 271 pages. Available in PDF, EPUB and Kindle. Book excerpt: Parameter estimation in stochastic differential equations and stochastic partial differential equations is the science, art and technology of modeling complex phenomena. The subject has attracted researchers from several areas of mathematics. This volume presents the estimation of the unknown parameters in the corresponding continuous models based on continuous and discrete observations and examines extensively maximum likelihood, minimum contrast and Bayesian methods.

Accelerating Monte Carlo methods for Bayesian inference in dynamical models

Download Accelerating Monte Carlo methods for Bayesian inference in dynamical models PDF Online Free

Author :
Publisher : Linköping University Electronic Press
ISBN 13 : 9176857972
Total Pages : 139 pages
Book Rating : 4.1/5 (768 download)

DOWNLOAD NOW!


Book Synopsis Accelerating Monte Carlo methods for Bayesian inference in dynamical models by : Johan Dahlin

Download or read book Accelerating Monte Carlo methods for Bayesian inference in dynamical models written by Johan Dahlin and published by Linköping University Electronic Press. This book was released on 2016-03-22 with total page 139 pages. Available in PDF, EPUB and Kindle. Book excerpt: Making decisions and predictions from noisy observations are two important and challenging problems in many areas of society. Some examples of applications are recommendation systems for online shopping and streaming services, connecting genes with certain diseases and modelling climate change. In this thesis, we make use of Bayesian statistics to construct probabilistic models given prior information and historical data, which can be used for decision support and predictions. The main obstacle with this approach is that it often results in mathematical problems lacking analytical solutions. To cope with this, we make use of statistical simulation algorithms known as Monte Carlo methods to approximate the intractable solution. These methods enjoy well-understood statistical properties but are often computational prohibitive to employ. The main contribution of this thesis is the exploration of different strategies for accelerating inference methods based on sequential Monte Carlo (SMC) and Markov chain Monte Carlo (MCMC). That is, strategies for reducing the computational effort while keeping or improving the accuracy. A major part of the thesis is devoted to proposing such strategies for the MCMC method known as the particle Metropolis-Hastings (PMH) algorithm. We investigate two strategies: (i) introducing estimates of the gradient and Hessian of the target to better tailor the algorithm to the problem and (ii) introducing a positive correlation between the point-wise estimates of the target. Furthermore, we propose an algorithm based on the combination of SMC and Gaussian process optimisation, which can provide reasonable estimates of the posterior but with a significant decrease in computational effort compared with PMH. Moreover, we explore the use of sparseness priors for approximate inference in over-parametrised mixed effects models and autoregressive processes. This can potentially be a practical strategy for inference in the big data era. Finally, we propose a general method for increasing the accuracy of the parameter estimates in non-linear state space models by applying a designed input signal. Borde Riksbanken höja eller sänka reporäntan vid sitt nästa möte för att nå inflationsmålet? Vilka gener är förknippade med en viss sjukdom? Hur kan Netflix och Spotify veta vilka filmer och vilken musik som jag vill lyssna på härnäst? Dessa tre problem är exempel på frågor där statistiska modeller kan vara användbara för att ge hjälp och underlag för beslut. Statistiska modeller kombinerar teoretisk kunskap om exempelvis det svenska ekonomiska systemet med historisk data för att ge prognoser av framtida skeenden. Dessa prognoser kan sedan användas för att utvärdera exempelvis vad som skulle hända med inflationen i Sverige om arbetslösheten sjunker eller hur värdet på mitt pensionssparande förändras när Stockholmsbörsen rasar. Tillämpningar som dessa och många andra gör statistiska modeller viktiga för många delar av samhället. Ett sätt att ta fram statistiska modeller bygger på att kontinuerligt uppdatera en modell allteftersom mer information samlas in. Detta angreppssätt kallas för Bayesiansk statistik och är särskilt användbart när man sedan tidigare har bra insikter i modellen eller tillgång till endast lite historisk data för att bygga modellen. En nackdel med Bayesiansk statistik är att de beräkningar som krävs för att uppdatera modellen med den nya informationen ofta är mycket komplicerade. I sådana situationer kan man istället simulera utfallet från miljontals varianter av modellen och sedan jämföra dessa mot de historiska observationerna som finns till hands. Man kan sedan medelvärdesbilda över de varianter som gav bäst resultat för att på så sätt ta fram en slutlig modell. Det kan därför ibland ta dagar eller veckor för att ta fram en modell. Problemet blir särskilt stort när man använder mer avancerade modeller som skulle kunna ge bättre prognoser men som tar för lång tid för att bygga. I denna avhandling använder vi ett antal olika strategier för att underlätta eller förbättra dessa simuleringar. Vi föreslår exempelvis att ta hänsyn till fler insikter om systemet och därmed minska antalet varianter av modellen som behöver undersökas. Vi kan således redan utesluta vissa modeller eftersom vi har en bra uppfattning om ungefär hur en bra modell ska se ut. Vi kan också förändra simuleringen så att den enklare rör sig mellan olika typer av modeller. På detta sätt utforskas rymden av alla möjliga modeller på ett mer effektivt sätt. Vi föreslår ett antal olika kombinationer och förändringar av befintliga metoder för att snabba upp anpassningen av modellen till observationerna. Vi visar att beräkningstiden i vissa fall kan minska ifrån några dagar till någon timme. Förhoppningsvis kommer detta i framtiden leda till att man i praktiken kan använda mer avancerade modeller som i sin tur resulterar i bättre prognoser och beslut.

Handbook of Parallel Computing and Statistics

Download Handbook of Parallel Computing and Statistics PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 9781420028683
Total Pages : 560 pages
Book Rating : 4.0/5 (286 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Parallel Computing and Statistics by : Erricos John Kontoghiorghes

Download or read book Handbook of Parallel Computing and Statistics written by Erricos John Kontoghiorghes and published by CRC Press. This book was released on 2005-12-21 with total page 560 pages. Available in PDF, EPUB and Kindle. Book excerpt: Technological improvements continue to push back the frontier of processor speed in modern computers. Unfortunately, the computational intensity demanded by modern research problems grows even faster. Parallel computing has emerged as the most successful bridge to this computational gap, and many popular solutions have emerged based on its concepts

Modelling Financial Time Series

Download Modelling Financial Time Series PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9812770852
Total Pages : 297 pages
Book Rating : 4.8/5 (127 download)

DOWNLOAD NOW!


Book Synopsis Modelling Financial Time Series by : Stephen J. Taylor

Download or read book Modelling Financial Time Series written by Stephen J. Taylor and published by World Scientific. This book was released on 2008 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains several innovative models for the prices of financial assets. First published in 1986, it is a classic text in the area of financial econometrics. It presents ARCH and stochastic volatility models that are often used and cited in academic research and are applied by quantitative analysts in many banks. Another often-cited contribution of the first edition is the documentation of statistical characteristics of financial returns, which are referred to as stylized facts. This second edition takes into account the remarkable progress made by empirical researchers during the past two decades from 1986 to 2006. In the new Preface, the author summarizes this progress in two key areas: firstly, measuring, modelling and forecasting volatility; and secondly, detecting and exploiting price trends. Sample Chapter(s). Chapter 1: Introduction (1,134 KB). Contents: Features of Financial Returns; Modelling Price Volatility; Forecasting Standard Deviations; The Accuracy of Autocorrelation Estimates; Testing the Random Walk Hypothesis; Forecasting Trends in Prices; Evidence Against the Efficiency of Futures Markets; Valuing Options; Appendix: A Computer Program for Modelling Financial Time Series. Readership: Academic researchers in finance & economics; quantitative analysts.

Computational Economics: Heterogeneous Agent Modeling

Download Computational Economics: Heterogeneous Agent Modeling PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0444641327
Total Pages : 836 pages
Book Rating : 4.4/5 (446 download)

DOWNLOAD NOW!


Book Synopsis Computational Economics: Heterogeneous Agent Modeling by : Cars Hommes

Download or read book Computational Economics: Heterogeneous Agent Modeling written by Cars Hommes and published by Elsevier. This book was released on 2018-06-27 with total page 836 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Computational Economics: Heterogeneous Agent Modeling, Volume Four, focuses on heterogeneous agent models, emphasizing recent advances in macroeconomics (including DSGE), finance, empirical validation and experiments, networks and related applications. Capturing the advances made since the publication of Volume Two (Tesfatsion & Judd, 2006), it provides high-level literature with sections devoted to Macroeconomics, Finance, Empirical Validation and Experiments, Networks, and other applications, including Innovation Diffusion in Heterogeneous Populations, Market Design and Electricity Markets, and a final section on Perspectives on Heterogeneity. - Helps readers fully understand the dynamic properties of realistically rendered economic systems - Emphasizes detailed specifications of structural conditions, institutional arrangements and behavioral dispositions - Provides broad assessments that can lead researchers to recognize new synergies and opportunities

Quantifying Uncertainty in Subsurface Systems

Download Quantifying Uncertainty in Subsurface Systems PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119325870
Total Pages : 304 pages
Book Rating : 4.1/5 (193 download)

DOWNLOAD NOW!


Book Synopsis Quantifying Uncertainty in Subsurface Systems by : Céline Scheidt

Download or read book Quantifying Uncertainty in Subsurface Systems written by Céline Scheidt and published by John Wiley & Sons. This book was released on 2018-04-27 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: Under the Earth’s surface is a rich array of geological resources, many with potential use to humankind. However, extracting and harnessing them comes with enormous uncertainties, high costs, and considerable risks. The valuation of subsurface resources involves assessing discordant factors to produce a decision model that is functional and sustainable. This volume provides real-world examples relating to oilfields, geothermal systems, contaminated sites, and aquifer recharge. Volume highlights include: • A multi-disciplinary treatment of uncertainty quantification • Case studies with actual data that will appeal to methodology developers • A Bayesian evidential learning framework that reduces computation and modeling time Quantifying Uncertainty in Subsurface Systems is a multidisciplinary volume that brings together five major fields: information science, decision science, geosciences, data science and computer science. It will appeal to both students and practitioners, and be a valuable resource for geoscientists, engineers and applied mathematicians. Read the Editors’ Vox: https://eos.org/editors-vox/quantifying-uncertainty-about-earths-resources

The Oxford Handbook of Bayesian Econometrics

Download The Oxford Handbook of Bayesian Econometrics PDF Online Free

Author :
Publisher : Oxford University Press
ISBN 13 : 0191618268
Total Pages : 576 pages
Book Rating : 4.1/5 (916 download)

DOWNLOAD NOW!


Book Synopsis The Oxford Handbook of Bayesian Econometrics by : John Geweke

Download or read book The Oxford Handbook of Bayesian Econometrics written by John Geweke and published by Oxford University Press. This book was released on 2011-09-29 with total page 576 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian econometric methods have enjoyed an increase in popularity in recent years. Econometricians, empirical economists, and policymakers are increasingly making use of Bayesian methods. This handbook is a single source for researchers and policymakers wanting to learn about Bayesian methods in specialized fields, and for graduate students seeking to make the final step from textbook learning to the research frontier. It contains contributions by leading Bayesians on the latest developments in their specific fields of expertise. The volume provides broad coverage of the application of Bayesian econometrics in the major fields of economics and related disciplines, including macroeconomics, microeconomics, finance, and marketing. It reviews the state of the art in Bayesian econometric methodology, with chapters on posterior simulation and Markov chain Monte Carlo methods, Bayesian nonparametric techniques, and the specialized tools used by Bayesian time series econometricians such as state space models and particle filtering. It also includes chapters on Bayesian principles and methodology.

Dynamic Time Series Models using R-INLA

Download Dynamic Time Series Models using R-INLA PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000622606
Total Pages : 297 pages
Book Rating : 4.0/5 (6 download)

DOWNLOAD NOW!


Book Synopsis Dynamic Time Series Models using R-INLA by : Nalini Ravishanker

Download or read book Dynamic Time Series Models using R-INLA written by Nalini Ravishanker and published by CRC Press. This book was released on 2022-08-10 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dynamic Time Series Models using R-INLA: An Applied Perspective is the outcome of a joint effort to systematically describe the use of R-INLA for analysing time series and showcasing the code and description by several examples. This book introduces the underpinnings of R-INLA and the tools needed for modelling different types of time series using an approximate Bayesian framework. The book is an ideal reference for statisticians and scientists who work with time series data. It provides an excellent resource for teaching a course on Bayesian analysis using state space models for time series. Key Features: Introduction and overview of R-INLA for time series analysis. Gaussian and non-Gaussian state space models for time series. State space models for time series with exogenous predictors. Hierarchical models for a potentially large set of time series. Dynamic modelling of stochastic volatility and spatio-temporal dependence.

Bayesian Statistics and New Generations

Download Bayesian Statistics and New Generations PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030306119
Total Pages : 184 pages
Book Rating : 4.0/5 (33 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Statistics and New Generations by : Raffaele Argiento

Download or read book Bayesian Statistics and New Generations written by Raffaele Argiento and published by Springer Nature. This book was released on 2019-11-21 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a selection of peer-reviewed contributions to the fourth Bayesian Young Statisticians Meeting, BAYSM 2018, held at the University of Warwick on 2-3 July 2018. The meeting provided a valuable opportunity for young researchers, MSc students, PhD students, and postdocs interested in Bayesian statistics to connect with the broader Bayesian community. The proceedings offer cutting-edge papers on a wide range of topics in Bayesian statistics, identify important challenges and investigate promising methodological approaches, while also assessing current methods and stimulating applications. The book is intended for a broad audience of statisticians, and demonstrates how theoretical, methodological, and computational aspects are often combined in the Bayesian framework to successfully tackle complex problems.

Bayesian Inference in the Social Sciences

Download Bayesian Inference in the Social Sciences PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118771125
Total Pages : 266 pages
Book Rating : 4.1/5 (187 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Inference in the Social Sciences by : Ivan Jeliazkov

Download or read book Bayesian Inference in the Social Sciences written by Ivan Jeliazkov and published by John Wiley & Sons. This book was released on 2014-11-04 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents new models, methods, and techniques and considers important real-world applications in political science, sociology, economics, marketing, and finance Emphasizing interdisciplinary coverage, Bayesian Inference in the Social Sciences builds upon the recent growth in Bayesian methodology and examines an array of topics in model formulation, estimation, and applications. The book presents recent and trending developments in a diverse, yet closely integrated, set of research topics within the social sciences and facilitates the transmission of new ideas and methodology across disciplines while maintaining manageability, coherence, and a clear focus. Bayesian Inference in the Social Sciences features innovative methodology and novel applications in addition to new theoretical developments and modeling approaches, including the formulation and analysis of models with partial observability, sample selection, and incomplete data. Additional areas of inquiry include a Bayesian derivation of empirical likelihood and method of moment estimators, and the analysis of treatment effect models with endogeneity. The book emphasizes practical implementation, reviews and extends estimation algorithms, and examines innovative applications in a multitude of fields. Time series techniques and algorithms are discussed for stochastic volatility, dynamic factor, and time-varying parameter models. Additional features include: Real-world applications and case studies that highlight asset pricing under fat-tailed distributions, price indifference modeling and market segmentation, analysis of dynamic networks, ethnic minorities and civil war, school choice effects, and business cycles and macroeconomic performance State-of-the-art computational tools and Markov chain Monte Carlo algorithms with related materials available via the book’s supplemental website Interdisciplinary coverage from well-known international scholars and practitioners Bayesian Inference in the Social Sciences is an ideal reference for researchers in economics, political science, sociology, and business as well as an excellent resource for academic, government, and regulation agencies. The book is also useful for graduate-level courses in applied econometrics, statistics, mathematical modeling and simulation, numerical methods, computational analysis, and the social sciences.