Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Parallel Computing For Data Science
Download Parallel Computing For Data Science full books in PDF, epub, and Kindle. Read online Parallel Computing For Data Science ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Parallel Computing for Data Science by : Norman Matloff
Download or read book Parallel Computing for Data Science written by Norman Matloff and published by CRC Press. This book was released on 2015-06-04 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is one of the first parallel computing books to focus exclusively on parallel data structures, algorithms, software tools, and applications in data science. The book prepares readers to write effective parallel code in various languages and learn more about different R packages and other tools. It covers the classic n observations, p variables matrix format and common data structures. Many examples illustrate the range of issues encountered in parallel programming.
Book Synopsis Scientific Parallel Computing by : L. Ridgway Scott
Download or read book Scientific Parallel Computing written by L. Ridgway Scott and published by Princeton University Press. This book was released on 2021-03-09 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: What does Google's management of billions of Web pages have in common with analysis of a genome with billions of nucleotides? Both apply methods that coordinate many processors to accomplish a single task. From mining genomes to the World Wide Web, from modeling financial markets to global weather patterns, parallel computing enables computations that would otherwise be impractical if not impossible with sequential approaches alone. Its fundamental role as an enabler of simulations and data analysis continues an advance in a wide range of application areas. Scientific Parallel Computing is the first textbook to integrate all the fundamentals of parallel computing in a single volume while also providing a basis for a deeper understanding of the subject. Designed for graduate and advanced undergraduate courses in the sciences and in engineering, computer science, and mathematics, it focuses on the three key areas of algorithms, architecture, languages, and their crucial synthesis in performance. The book's computational examples, whose math prerequisites are not beyond the level of advanced calculus, derive from a breadth of topics in scientific and engineering simulation and data analysis. The programming exercises presented early in the book are designed to bring students up to speed quickly, while the book later develops projects challenging enough to guide students toward research questions in the field. The new paradigm of cluster computing is fully addressed. A supporting web site provides access to all the codes and software mentioned in the book, and offers topical information on popular parallel computing systems. Integrates all the fundamentals of parallel computing essential for today's high-performance requirements Ideal for graduate and advanced undergraduate students in the sciences and in engineering, computer science, and mathematics Extensive programming and theoretical exercises enable students to write parallel codes quickly More challenging projects later in the book introduce research questions New paradigm of cluster computing fully addressed Supporting web site provides access to all the codes and software mentioned in the book
Book Synopsis Programming Models for Parallel Computing by : Pavan Balaji
Download or read book Programming Models for Parallel Computing written by Pavan Balaji and published by MIT Press. This book was released on 2015-11-06 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: An overview of the most prominent contemporary parallel processing programming models, written in a unique tutorial style. With the coming of the parallel computing era, computer scientists have turned their attention to designing programming models that are suited for high-performance parallel computing and supercomputing systems. Programming parallel systems is complicated by the fact that multiple processing units are simultaneously computing and moving data. This book offers an overview of some of the most prominent parallel programming models used in high-performance computing and supercomputing systems today. The chapters describe the programming models in a unique tutorial style rather than using the formal approach taken in the research literature. The aim is to cover a wide range of parallel programming models, enabling the reader to understand what each has to offer. The book begins with a description of the Message Passing Interface (MPI), the most common parallel programming model for distributed memory computing. It goes on to cover one-sided communication models, ranging from low-level runtime libraries (GASNet, OpenSHMEM) to high-level programming models (UPC, GA, Chapel); task-oriented programming models (Charm++, ADLB, Scioto, Swift, CnC) that allow users to describe their computation and data units as tasks so that the runtime system can manage computation and data movement as necessary; and parallel programming models intended for on-node parallelism in the context of multicore architecture or attached accelerators (OpenMP, Cilk Plus, TBB, CUDA, OpenCL). The book will be a valuable resource for graduate students, researchers, and any scientist who works with data sets and large computations. Contributors Timothy Armstrong, Michael G. Burke, Ralph Butler, Bradford L. Chamberlain, Sunita Chandrasekaran, Barbara Chapman, Jeff Daily, James Dinan, Deepak Eachempati, Ian T. Foster, William D. Gropp, Paul Hargrove, Wen-mei Hwu, Nikhil Jain, Laxmikant Kale, David Kirk, Kath Knobe, Ariram Krishnamoorthy, Jeffery A. Kuehn, Alexey Kukanov, Charles E. Leiserson, Jonathan Lifflander, Ewing Lusk, Tim Mattson, Bruce Palmer, Steven C. Pieper, Stephen W. Poole, Arch D. Robison, Frank Schlimbach, Rajeev Thakur, Abhinav Vishnu, Justin M. Wozniak, Michael Wilde, Kathy Yelick, Yili Zheng
Book Synopsis Parallel Processing for Scientific Computing by : Michael A. Heroux
Download or read book Parallel Processing for Scientific Computing written by Michael A. Heroux and published by SIAM. This book was released on 2006-01-01 with total page 421 pages. Available in PDF, EPUB and Kindle. Book excerpt: Parallel processing has been an enabling technology in scientific computing for more than 20 years. This book is the first in-depth discussion of parallel computing in 10 years; it reflects the mix of topics that mathematicians, computer scientists, and computational scientists focus on to make parallel processing effective for scientific problems. Presently, the impact of parallel processing on scientific computing varies greatly across disciplines, but it plays a vital role in most problem domains and is absolutely essential in many of them. Parallel Processing for Scientific Computing is divided into four parts: The first concerns performance modeling, analysis, and optimization; the second focuses on parallel algorithms and software for an array of problems common to many modeling and simulation applications; the third emphasizes tools and environments that can ease and enhance the process of application development; and the fourth provides a sampling of applications that require parallel computing for scaling to solve larger and realistic models that can advance science and engineering.
Book Synopsis Algorithms and Parallel Computing by : Fayez Gebali
Download or read book Algorithms and Parallel Computing written by Fayez Gebali and published by John Wiley & Sons. This book was released on 2011-03-29 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: There is a software gap between the hardware potential and the performance that can be attained using today's software parallel program development tools. The tools need manual intervention by the programmer to parallelize the code. Programming a parallel computer requires closely studying the target algorithm or application, more so than in the traditional sequential programming we have all learned. The programmer must be aware of the communication and data dependencies of the algorithm or application. This book provides the techniques to explore the possible ways to program a parallel computer for a given application.
Book Synopsis Introduction to Parallel Computing by : Roman Trobec
Download or read book Introduction to Parallel Computing written by Roman Trobec and published by Springer. This book was released on 2018-09-27 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advancements in microprocessor architecture, interconnection technology, and software development have fueled rapid growth in parallel and distributed computing. However, this development is only of practical benefit if it is accompanied by progress in the design, analysis and programming of parallel algorithms. This concise textbook provides, in one place, three mainstream parallelization approaches, Open MPP, MPI and OpenCL, for multicore computers, interconnected computers and graphical processing units. An overview of practical parallel computing and principles will enable the reader to design efficient parallel programs for solving various computational problems on state-of-the-art personal computers and computing clusters. Topics covered range from parallel algorithms, programming tools, OpenMP, MPI and OpenCL, followed by experimental measurements of parallel programs’ run-times, and by engineering analysis of obtained results for improved parallel execution performances. Many examples and exercises support the exposition.
Book Synopsis Patterns for Parallel Programming by : Timothy G. Mattson
Download or read book Patterns for Parallel Programming written by Timothy G. Mattson and published by Pearson Education. This book was released on 2004-09-15 with total page 786 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Parallel Programming Guide for Every Software Developer From grids and clusters to next-generation game consoles, parallel computing is going mainstream. Innovations such as Hyper-Threading Technology, HyperTransport Technology, and multicore microprocessors from IBM, Intel, and Sun are accelerating the movement's growth. Only one thing is missing: programmers with the skills to meet the soaring demand for parallel software. That's where Patterns for Parallel Programming comes in. It's the first parallel programming guide written specifically to serve working software developers, not just computer scientists. The authors introduce a complete, highly accessible pattern language that will help any experienced developer "think parallel"-and start writing effective parallel code almost immediately. Instead of formal theory, they deliver proven solutions to the challenges faced by parallel programmers, and pragmatic guidance for using today's parallel APIs in the real world. Coverage includes: Understanding the parallel computing landscape and the challenges faced by parallel developers Finding the concurrency in a software design problem and decomposing it into concurrent tasks Managing the use of data across tasks Creating an algorithm structure that effectively exploits the concurrency you've identified Connecting your algorithmic structures to the APIs needed to implement them Specific software constructs for implementing parallel programs Working with today's leading parallel programming environments: OpenMP, MPI, and Java Patterns have helped thousands of programmers master object-oriented development and other complex programming technologies. With this book, you will learn that they're the best way to master parallel programming too.
Book Synopsis R Programming for Data Science by : Roger D. Peng
Download or read book R Programming for Data Science written by Roger D. Peng and published by . This book was released on 2012-04-19 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data science has taken the world by storm. Every field of study and area of business has been affected as people increasingly realize the value of the incredible quantities of data being generated. But to extract value from those data, one needs to be trained in the proper data science skills. The R programming language has become the de facto programming language for data science. Its flexibility, power, sophistication, and expressiveness have made it an invaluable tool for data scientists around the world. This book is about the fundamentals of R programming. You will get started with the basics of the language, learn how to manipulate datasets, how to write functions, and how to debug and optimize code. With the fundamentals provided in this book, you will have a solid foundation on which to build your data science toolbox.
Book Synopsis Deep Learning and Parallel Computing Environment for Bioengineering Systems by : Arun Kumar Sangaiah
Download or read book Deep Learning and Parallel Computing Environment for Bioengineering Systems written by Arun Kumar Sangaiah and published by Academic Press. This book was released on 2019-07-26 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep Learning and Parallel Computing Environment for Bioengineering Systems delivers a significant forum for the technical advancement of deep learning in parallel computing environment across bio-engineering diversified domains and its applications. Pursuing an interdisciplinary approach, it focuses on methods used to identify and acquire valid, potentially useful knowledge sources. Managing the gathered knowledge and applying it to multiple domains including health care, social networks, mining, recommendation systems, image processing, pattern recognition and predictions using deep learning paradigms is the major strength of this book. This book integrates the core ideas of deep learning and its applications in bio engineering application domains, to be accessible to all scholars and academicians. The proposed techniques and concepts in this book can be extended in future to accommodate changing business organizations' needs as well as practitioners' innovative ideas. - Presents novel, in-depth research contributions from a methodological/application perspective in understanding the fusion of deep machine learning paradigms and their capabilities in solving a diverse range of problems - Illustrates the state-of-the-art and recent developments in the new theories and applications of deep learning approaches applied to parallel computing environment in bioengineering systems - Provides concepts and technologies that are successfully used in the implementation of today's intelligent data-centric critical systems and multi-media Cloud-Big data
Book Synopsis Vector Models for Data-parallel Computing by : Guy E. Blelloch
Download or read book Vector Models for Data-parallel Computing written by Guy E. Blelloch and published by MIT Press (MA). This book was released on 1990 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics of Computing -- Parallelism.
Book Synopsis Data Intensive Computing Applications for Big Data by : M. Mittal
Download or read book Data Intensive Computing Applications for Big Data written by M. Mittal and published by IOS Press. This book was released on 2018-01-31 with total page 618 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book ‘Data Intensive Computing Applications for Big Data’ discusses the technical concepts of big data, data intensive computing through machine learning, soft computing and parallel computing paradigms. It brings together researchers to report their latest results or progress in the development of the above mentioned areas. Since there are few books on this specific subject, the editors aim to provide a common platform for researchers working in this area to exhibit their novel findings. The book is intended as a reference work for advanced undergraduates and graduate students, as well as multidisciplinary, interdisciplinary and transdisciplinary research workers and scientists on the subjects of big data and cloud/parallel and distributed computing, and explains didactically many of the core concepts of these approaches for practical applications. It is organized into 24 chapters providing a comprehensive overview of big data analysis using parallel computing and addresses the complete data science workflow in the cloud, as well as dealing with privacy issues and the challenges faced in a data-intensive cloud computing environment. The book explores both fundamental and high-level concepts, and will serve as a manual for those in the industry, while also helping beginners to understand the basic and advanced aspects of big data and cloud computing.
Book Synopsis The Art of Multiprocessor Programming, Revised Reprint by : Maurice Herlihy
Download or read book The Art of Multiprocessor Programming, Revised Reprint written by Maurice Herlihy and published by Elsevier. This book was released on 2012-06-25 with total page 537 pages. Available in PDF, EPUB and Kindle. Book excerpt: Revised and updated with improvements conceived in parallel programming courses, The Art of Multiprocessor Programming is an authoritative guide to multicore programming. It introduces a higher level set of software development skills than that needed for efficient single-core programming. This book provides comprehensive coverage of the new principles, algorithms, and tools necessary for effective multiprocessor programming. Students and professionals alike will benefit from thorough coverage of key multiprocessor programming issues. - This revised edition incorporates much-demanded updates throughout the book, based on feedback and corrections reported from classrooms since 2008 - Learn the fundamentals of programming multiple threads accessing shared memory - Explore mainstream concurrent data structures and the key elements of their design, as well as synchronization techniques from simple locks to transactional memory systems - Visit the companion site and download source code, example Java programs, and materials to support and enhance the learning experience
Book Synopsis Handbook of Parallel Computing and Statistics by : Erricos John Kontoghiorghes
Download or read book Handbook of Parallel Computing and Statistics written by Erricos John Kontoghiorghes and published by CRC Press. This book was released on 2005-12-21 with total page 560 pages. Available in PDF, EPUB and Kindle. Book excerpt: Technological improvements continue to push back the frontier of processor speed in modern computers. Unfortunately, the computational intensity demanded by modern research problems grows even faster. Parallel computing has emerged as the most successful bridge to this computational gap, and many popular solutions have emerged based on its concepts
Book Synopsis Introduction to Parallel Computing by : Vipin Kumar
Download or read book Introduction to Parallel Computing written by Vipin Kumar and published by Addison Wesley Longman. This book was released on 1994 with total page 632 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics of Computing -- Parallelism.
Book Synopsis Parallel Computing Works! by : Geoffrey C. Fox
Download or read book Parallel Computing Works! written by Geoffrey C. Fox and published by Elsevier. This book was released on 2014-06-28 with total page 1012 pages. Available in PDF, EPUB and Kindle. Book excerpt: A clear illustration of how parallel computers can be successfully appliedto large-scale scientific computations. This book demonstrates how avariety of applications in physics, biology, mathematics and other scienceswere implemented on real parallel computers to produce new scientificresults. It investigates issues of fine-grained parallelism relevant forfuture supercomputers with particular emphasis on hypercube architecture. The authors describe how they used an experimental approach to configuredifferent massively parallel machines, design and implement basic systemsoftware, and develop algorithms for frequently used mathematicalcomputations. They also devise performance models, measure the performancecharacteristics of several computers, and create a high-performancecomputing facility based exclusively on parallel computers. By addressingall issues involved in scientific problem solving, Parallel ComputingWorks! provides valuable insight into computational science for large-scaleparallel architectures. For those in the sciences, the findings reveal theusefulness of an important experimental tool. Anyone in supercomputing andrelated computational fields will gain a new perspective on the potentialcontributions of parallelism. Includes over 30 full-color illustrations.
Book Synopsis Parallel Scientific Computing in C++ and MPI by : George Em Karniadakis
Download or read book Parallel Scientific Computing in C++ and MPI written by George Em Karniadakis and published by Cambridge University Press. This book was released on 2003-06-16 with total page 640 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical algorithms, modern programming techniques, and parallel computing are often taught serially across different courses and different textbooks. The need to integrate concepts and tools usually comes only in employment or in research - after the courses are concluded - forcing the student to synthesise what is perceived to be three independent subfields into one. This book provides a seamless approach to stimulate the student simultaneously through the eyes of multiple disciplines, leading to enhanced understanding of scientific computing as a whole. The book includes both basic as well as advanced topics and places equal emphasis on the discretization of partial differential equations and on solvers. Some of the advanced topics include wavelets, high-order methods, non-symmetric systems, and parallelization of sparse systems. The material covered is suited to students from engineering, computer science, physics and mathematics.
Book Synopsis Parallel Computing: Accelerating Computational Science and Engineering (CSE) by : M. Bader
Download or read book Parallel Computing: Accelerating Computational Science and Engineering (CSE) written by M. Bader and published by IOS Press. This book was released on 2014-03-31 with total page 868 pages. Available in PDF, EPUB and Kindle. Book excerpt: Parallel computing has been the enabling technology of high-end machines for many years. Now, it has finally become the ubiquitous key to the efficient use of any kind of multi-processor computer architecture, from smart phones, tablets, embedded systems and cloud computing up to exascale computers. _x000D_ This book presents the proceedings of ParCo2013 – the latest edition of the biennial International Conference on Parallel Computing – held from 10 to 13 September 2013, in Garching, Germany. The conference focused on several key parallel computing areas. Themes included parallel programming models for multi- and manycore CPUs, GPUs, FPGAs and heterogeneous platforms, the performance engineering processes that must be adapted to efficiently use these new and innovative platforms, novel numerical algorithms and approaches to large-scale simulations of problems in science and engineering._x000D_ The conference programme also included twelve mini-symposia (including an industry session and a special PhD Symposium), which comprehensively represented and intensified the discussion of current hot topics in high performance and parallel computing. These special sessions covered large-scale supercomputing, novel challenges arising from parallel architectures (multi-/manycore, heterogeneous platforms, FPGAs), multi-level algorithms as well as multi-scale, multi-physics and multi-dimensional problems._x000D_ It is clear that parallel computing – including the processing of large data sets (“Big Data”) – will remain a persistent driver of research in all fields of innovative computing, which makes this book relevant to all those with an interest in this field.