Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Oriented Projective Geometry
Download Oriented Projective Geometry full books in PDF, epub, and Kindle. Read online Oriented Projective Geometry ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Oriented Projective Geometry by : Jorge Stolfi
Download or read book Oriented Projective Geometry written by Jorge Stolfi and published by Academic Press. This book was released on 2014-05-10 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: Oriented Projective Geometry: A Framework for Geometric Computations proposes that oriented projective geometry is a better framework for geometric computations than classical projective geometry. The aim of the book is to stress the value of oriented projective geometry for practical computing and develop it as a rich, consistent, and effective tool for computer programmers. The monograph is comprised of 20 chapters. Chapter 1 gives a quick overview of classical and oriented projective geometry on the plane, and discusses their advantages and disadvantages as computational models. Chapters 2 through 7 define the canonical oriented projective spaces of arbitrary dimension, the operations of join and meet, and the concept of relative orientation. Chapter 8 defines projective maps, the space transformations that preserve incidence and orientation; these maps are used in chapter 9 to define abstract oriented projective spaces. Chapter 10 introduces the notion of projective duality. Chapters 11, 12, and 13 deal with projective functions, projective frames, relative coordinates, and cross-ratio. Chapter 14 tells about convexity in oriented projective spaces. Chapters 15, 16, and 17 show how the affine, Euclidean, and linear vector spaces can be emulated with the oriented projective space. Finally, chapters 18 through 20 discuss the computer representation and manipulation of lines, planes, and other subspaces. Computer scientists and programmers will find this text invaluable.
Author :Jürgen Richter-Gebert Publisher :Springer Science & Business Media ISBN 13 :3642172865 Total Pages :573 pages Book Rating :4.6/5 (421 download)
Book Synopsis Perspectives on Projective Geometry by : Jürgen Richter-Gebert
Download or read book Perspectives on Projective Geometry written by Jürgen Richter-Gebert and published by Springer Science & Business Media. This book was released on 2011-02-04 with total page 573 pages. Available in PDF, EPUB and Kindle. Book excerpt: Projective geometry is one of the most fundamental and at the same time most beautiful branches of geometry. It can be considered the common foundation of many other geometric disciplines like Euclidean geometry, hyperbolic and elliptic geometry or even relativistic space-time geometry. This book offers a comprehensive introduction to this fascinating field and its applications. In particular, it explains how metric concepts may be best understood in projective terms. One of the major themes that appears throughout this book is the beauty of the interplay between geometry, algebra and combinatorics. This book can especially be used as a guide that explains how geometric objects and operations may be most elegantly expressed in algebraic terms, making it a valuable resource for mathematicians, as well as for computer scientists and physicists. The book is based on the author’s experience in implementing geometric software and includes hundreds of high-quality illustrations.
Book Synopsis Photogrammetric Computer Vision by : Wolfgang Förstner
Download or read book Photogrammetric Computer Vision written by Wolfgang Förstner and published by Springer. This book was released on 2016-10-04 with total page 819 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook offers a statistical view on the geometry of multiple view analysis, required for camera calibration and orientation and for geometric scene reconstruction based on geometric image features. The authors have backgrounds in geodesy and also long experience with development and research in computer vision, and this is the first book to present a joint approach from the converging fields of photogrammetry and computer vision. Part I of the book provides an introduction to estimation theory, covering aspects such as Bayesian estimation, variance components, and sequential estimation, with a focus on the statistically sound diagnostics of estimation results essential in vision metrology. Part II provides tools for 2D and 3D geometric reasoning using projective geometry. This includes oriented projective geometry and tools for statistically optimal estimation and test of geometric entities and transformations and their relations, tools that are useful also in the context of uncertain reasoning in point clouds. Part III is devoted to modelling the geometry of single and multiple cameras, addressing calibration and orientation, including statistical evaluation and reconstruction of corresponding scene features and surfaces based on geometric image features. The authors provide algorithms for various geometric computation problems in vision metrology, together with mathematical justifications and statistical analysis, thus enabling thorough evaluations. The chapters are self-contained with numerous figures and exercises, and they are supported by an appendix that explains the basic mathematical notation and a detailed index. The book can serve as the basis for undergraduate and graduate courses in photogrammetry, computer vision, and computer graphics. It is also appropriate for researchers, engineers, and software developers in the photogrammetry and GIS industries, particularly those engaged with statistically based geometric computer vision methods.
Book Synopsis Introduction to Geometric Computing by : Sherif Ghali
Download or read book Introduction to Geometric Computing written by Sherif Ghali and published by Springer Science & Business Media. This book was released on 2008-07-05 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computing is quickly making much of geometry intriguing not only for philosophers and mathematicians, but also for scientists and engineers. What is the core set of topics that a practitioner needs to study before embarking on the design and implementation of a geometric system in a specialized discipline? This book attempts to find the answer. Every programmer tackling a geometric computing problem encounters design decisions that need to be solved. This book reviews the geometric theory then applies it in an attempt to find that elusive "right" design.
Book Synopsis Geometric Algebra for Computer Science by : Leo Dorst
Download or read book Geometric Algebra for Computer Science written by Leo Dorst and published by Elsevier. This book was released on 2010-07-26 with total page 664 pages. Available in PDF, EPUB and Kindle. Book excerpt: Until recently, almost all of the interactions between objects in virtual 3D worlds have been based on calculations performed using linear algebra. Linear algebra relies heavily on coordinates, however, which can make many geometric programming tasks very specific and complex-often a lot of effort is required to bring about even modest performance enhancements. Although linear algebra is an efficient way to specify low-level computations, it is not a suitable high-level language for geometric programming. Geometric Algebra for Computer Science presents a compelling alternative to the limitations of linear algebra. Geometric algebra, or GA, is a compact, time-effective, and performance-enhancing way to represent the geometry of 3D objects in computer programs. In this book you will find an introduction to GA that will give you a strong grasp of its relationship to linear algebra and its significance for your work. You will learn how to use GA to represent objects and perform geometric operations on them. And you will begin mastering proven techniques for making GA an integral part of your applications in a way that simplifies your code without slowing it down. * The first book on Geometric Algebra for programmers in computer graphics and entertainment computing * Written by leaders in the field providing essential information on this new technique for 3D graphics * This full colour book includes a website with GAViewer, a program to experiment with GA
Book Synopsis A Treatise on the Circle and the Sphere by : Julian Lowell Coolidge
Download or read book A Treatise on the Circle and the Sphere written by Julian Lowell Coolidge and published by . This book was released on 1916 with total page 603 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis The Geometry of Schemes by : David Eisenbud
Download or read book The Geometry of Schemes written by David Eisenbud and published by Springer Science & Business Media. This book was released on 2006-04-06 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: Grothendieck’s beautiful theory of schemes permeates modern algebraic geometry and underlies its applications to number theory, physics, and applied mathematics. This simple account of that theory emphasizes and explains the universal geometric concepts behind the definitions. In the book, concepts are illustrated with fundamental examples, and explicit calculations show how the constructions of scheme theory are carried out in practice.
Book Synopsis Geometry: A Comprehensive Course by : Dan Pedoe
Download or read book Geometry: A Comprehensive Course written by Dan Pedoe and published by Courier Corporation. This book was released on 2013-04-02 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to vector algebra in the plane; circles and coaxial systems; mappings of the Euclidean plane; similitudes, isometries, Moebius transformations, much more. Includes over 500 exercises.
Book Synopsis Geometry Through History by : Meighan I. Dillon
Download or read book Geometry Through History written by Meighan I. Dillon and published by Springer. This book was released on 2018-03-21 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presented as an engaging discourse, this textbook invites readers to delve into the historical origins and uses of geometry. The narrative traces the influence of Euclid’s system of geometry, as developed in his classic text The Elements, through the Arabic period, the modern era in the West, and up to twentieth century mathematics. Axioms and proof methods used by mathematicians from those periods are explored alongside the problems in Euclidean geometry that lead to their work. Students cultivate skills applicable to much of modern mathematics through sections that integrate concepts like projective and hyperbolic geometry with representative proof-based exercises. For its sophisticated account of ancient to modern geometries, this text assumes only a year of college mathematics as it builds towards its conclusion with algebraic curves and quaternions. Euclid’s work has affected geometry for thousands of years, so this text has something to offer to anyone who wants to broaden their appreciation for the field.
Book Synopsis Classical Geometry by : I. E. Leonard
Download or read book Classical Geometry written by I. E. Leonard and published by John Wiley & Sons. This book was released on 2014-04-30 with total page 501 pages. Available in PDF, EPUB and Kindle. Book excerpt: Features the classical themes of geometry with plentiful applications in mathematics, education, engineering, and science Accessible and reader-friendly, Classical Geometry: Euclidean, Transformational, Inversive, and Projective introduces readers to a valuable discipline that is crucial to understanding bothspatial relationships and logical reasoning. Focusing on the development of geometric intuitionwhile avoiding the axiomatic method, a problem solving approach is encouraged throughout. The book is strategically divided into three sections: Part One focuses on Euclidean geometry, which provides the foundation for the rest of the material covered throughout; Part Two discusses Euclidean transformations of the plane, as well as groups and their use in studying transformations; and Part Three covers inversive and projective geometry as natural extensions of Euclidean geometry. In addition to featuring real-world applications throughout, Classical Geometry: Euclidean, Transformational, Inversive, and Projective includes: Multiple entertaining and elegant geometry problems at the end of each section for every level of study Fully worked examples with exercises to facilitate comprehension and retention Unique topical coverage, such as the theorems of Ceva and Menalaus and their applications An approach that prepares readers for the art of logical reasoning, modeling, and proofs The book is an excellent textbook for courses in introductory geometry, elementary geometry, modern geometry, and history of mathematics at the undergraduate level for mathematics majors, as well as for engineering and secondary education majors. The book is also ideal for anyone who would like to learn the various applications of elementary geometry.
Book Synopsis Projective Geometry by : Oswald Veblen
Download or read book Projective Geometry written by Oswald Veblen and published by . This book was released on 1918 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Classical Algebraic Geometry by : Igor V. Dolgachev
Download or read book Classical Algebraic Geometry written by Igor V. Dolgachev and published by Cambridge University Press. This book was released on 2012-08-16 with total page 653 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algebraic geometry has benefited enormously from the powerful general machinery developed in the latter half of the twentieth century. The cost has been that much of the research of previous generations is in a language unintelligible to modern workers, in particular, the rich legacy of classical algebraic geometry, such as plane algebraic curves of low degree, special algebraic surfaces, theta functions, Cremona transformations, the theory of apolarity and the geometry of lines in projective spaces. The author's contemporary approach makes this legacy accessible to modern algebraic geometers and to others who are interested in applying classical results. The vast bibliography of over 600 references is complemented by an array of exercises that extend or exemplify results given in the book.
Book Synopsis 3264 and All That by : David Eisenbud
Download or read book 3264 and All That written by David Eisenbud and published by Cambridge University Press. This book was released on 2016-04-14 with total page 633 pages. Available in PDF, EPUB and Kindle. Book excerpt: 3264, the mathematical solution to a question concerning geometric figures.
Book Synopsis Proceedings of the Third Annual Symposium on Computational Geometry by :
Download or read book Proceedings of the Third Annual Symposium on Computational Geometry written by and published by . This book was released on 1987 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Geometry and Topology by : Miles Reid
Download or read book Geometry and Topology written by Miles Reid and published by Cambridge University Press. This book was released on 2005-11-10 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geometry aims to describe the world around us. It is central to many branches of mathematics and physics, and offers a whole range of views on the universe. This is an introduction to the ideas of geometry and includes generous helpings of simple explanations and examples. The book is based on many years teaching experience so is thoroughly class-tested, and as prerequisites are minimal, it is suited to newcomers to the subject. There are plenty of illustrations; chapters end with a collection of exercises, and solutions are available for teachers.
Book Synopsis The Real Projective Plane by : H.S.M. Coxeter
Download or read book The Real Projective Plane written by H.S.M. Coxeter and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: Along with many small improvements, this revised edition contains van Yzeren's new proof of Pascal's theorem (§1.7) and, in Chapter 2, an improved treatment of order and sense. The Sylvester-Gallai theorem, instead of being introduced as a curiosity, is now used as an essential step in the theory of harmonic separation (§3.34). This makes the logi cal development self-contained: the footnotes involving the References (pp. 214-216) are for comparison with earlier treatments, and to give credit where it is due, not to fill gaps in the argument. H.S.M.C. November 1992 v Preface to the Second Edition Why should one study the real plane? To this question, put by those who advocate the complex plane, or geometry over a general field, I would reply that the real plane is an easy first step. Most of the prop erties are closely analogous, and the real field has the advantage of intuitive accessibility. Moreover, real geometry is exactly what is needed for the projective approach to non· Euclidean geometry. Instead of introducing the affine and Euclidean metrics as in Chapters 8 and 9, we could just as well take the locus of 'points at infinity' to be a conic, or replace the absolute involution by an absolute polarity.
Book Synopsis Foundations of Projective Geometry by : Robin Hartshorne
Download or read book Foundations of Projective Geometry written by Robin Hartshorne and published by Ishi Press. This book was released on 2009 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first geometrical properties of a projective nature were discovered in the third century by Pappus of Alexandria. Filippo Brunelleschi (1404-1472) started investigating the geometry of perspective in 1425. Johannes Kepler (1571-1630) and Gerard Desargues (1591-1661) independently developed the pivotal concept of the "point at infinity." Desargues developed an alternative way of constructing perspective drawings by generalizing the use of vanishing points to include the case when these are infinitely far away. He made Euclidean geometry, where parallel lines are truly parallel, into a special case of an all-encompassing geometric system. Desargues's study on conic sections drew the attention of 16-years old Blaise Pascal and helped him formulate Pascal's theorem. The works of Gaspard Monge at the end of 18th and beginning of 19th century were important for the subsequent development of projective geometry. The work of Desargues was ignored until Michel Chasles chanced upon a handwritten copy in 1845. Meanwhile, Jean-Victor Poncelet had published the foundational treatise on projective geometry in 1822. Poncelet separated the projective properties of objects in individual class and establishing a relationship between metric and projective properties. The non-Euclidean geometries discovered shortly thereafter were eventually demonstrated to have models, such as the Klein model of hyperbolic space, relating to projective geometry.