Optimizing Hadoop for MapReduce

Download Optimizing Hadoop for MapReduce PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1783285664
Total Pages : 162 pages
Book Rating : 4.7/5 (832 download)

DOWNLOAD NOW!


Book Synopsis Optimizing Hadoop for MapReduce by : Khaled Tannir

Download or read book Optimizing Hadoop for MapReduce written by Khaled Tannir and published by Packt Publishing Ltd. This book was released on 2014-02-21 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an example-based tutorial that deals with Optimizing Hadoop for MapReduce job performance. If you are a Hadoop administrator, developer, MapReduce user, or beginner, this book is the best choice available if you wish to optimize your clusters and applications. Having prior knowledge of creating MapReduce applications is not necessary, but will help you better understand the concepts and snippets of MapReduce class template code.

Data-Intensive Text Processing with MapReduce

Download Data-Intensive Text Processing with MapReduce PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031021363
Total Pages : 171 pages
Book Rating : 4.0/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Data-Intensive Text Processing with MapReduce by : Jimmy Lin

Download or read book Data-Intensive Text Processing with MapReduce written by Jimmy Lin and published by Springer Nature. This book was released on 2022-05-31 with total page 171 pages. Available in PDF, EPUB and Kindle. Book excerpt: Our world is being revolutionized by data-driven methods: access to large amounts of data has generated new insights and opened exciting new opportunities in commerce, science, and computing applications. Processing the enormous quantities of data necessary for these advances requires large clusters, making distributed computing paradigms more crucial than ever. MapReduce is a programming model for expressing distributed computations on massive datasets and an execution framework for large-scale data processing on clusters of commodity servers. The programming model provides an easy-to-understand abstraction for designing scalable algorithms, while the execution framework transparently handles many system-level details, ranging from scheduling to synchronization to fault tolerance. This book focuses on MapReduce algorithm design, with an emphasis on text processing algorithms common in natural language processing, information retrieval, and machine learning. We introduce the notion of MapReduce design patterns, which represent general reusable solutions to commonly occurring problems across a variety of problem domains. This book not only intends to help the reader "think in MapReduce", but also discusses limitations of the programming model as well. Table of Contents: Introduction / MapReduce Basics / MapReduce Algorithm Design / Inverted Indexing for Text Retrieval / Graph Algorithms / EM Algorithms for Text Processing / Closing Remarks

Programming Elastic MapReduce

Download Programming Elastic MapReduce PDF Online Free

Author :
Publisher : O'Reilly Media
ISBN 13 : 9781449363628
Total Pages : 155 pages
Book Rating : 4.3/5 (636 download)

DOWNLOAD NOW!


Book Synopsis Programming Elastic MapReduce by : Kevin Schmidt

Download or read book Programming Elastic MapReduce written by Kevin Schmidt and published by O'Reilly Media. This book was released on 2013 with total page 155 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although you don’t need a large computing infrastructure to process massive amounts of data with Apache Hadoop, it can still be difficult to get started. This practical guide shows you how to quickly launch data analysis projects in the cloud by using Amazon Elastic MapReduce (EMR), the hosted Hadoop framework in Amazon Web Services (AWS). Authors Kevin Schmidt and Christopher Phillips demonstrate best practices for using EMR and various AWS and Apache technologies by walking you through the construction of a sample MapReduce log analysis application. Using code samples and example configurations, you’ll learn how to assemble the building blocks necessary to solve your biggest data analysis problems. Get an overview of the AWS and Apache software tools used in large-scale data analysis Go through the process of executing a Job Flow with a simple log analyzer Discover useful MapReduce patterns for filtering and analyzing data sets Use Apache Hive and Pig instead of Java to build a MapReduce Job Flow Learn the basics for using Amazon EMR to run machine learning algorithms Develop a project cost model for using Amazon EMR and other AWS tools

MapReduce Design Patterns

Download MapReduce Design Patterns PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1449341985
Total Pages : 417 pages
Book Rating : 4.4/5 (493 download)

DOWNLOAD NOW!


Book Synopsis MapReduce Design Patterns by : Donald Miner

Download or read book MapReduce Design Patterns written by Donald Miner and published by "O'Reilly Media, Inc.". This book was released on 2012-11-21 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: Until now, design patterns for the MapReduce framework have been scattered among various research papers, blogs, and books. This handy guide brings together a unique collection of valuable MapReduce patterns that will save you time and effort regardless of the domain, language, or development framework you’re using. Each pattern is explained in context, with pitfalls and caveats clearly identified to help you avoid common design mistakes when modeling your big data architecture. This book also provides a complete overview of MapReduce that explains its origins and implementations, and why design patterns are so important. All code examples are written for Hadoop. Summarization patterns: get a top-level view by summarizing and grouping data Filtering patterns: view data subsets such as records generated from one user Data organization patterns: reorganize data to work with other systems, or to make MapReduce analysis easier Join patterns: analyze different datasets together to discover interesting relationships Metapatterns: piece together several patterns to solve multi-stage problems, or to perform several analytics in the same job Input and output patterns: customize the way you use Hadoop to load or store data "A clear exposition of MapReduce programs for common data processing patterns—this book is indespensible for anyone using Hadoop." --Tom White, author of Hadoop: The Definitive Guide

Intelligent Computing

Download Intelligent Computing PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3030011771
Total Pages : 1405 pages
Book Rating : 4.0/5 (3 download)

DOWNLOAD NOW!


Book Synopsis Intelligent Computing by : Kohei Arai

Download or read book Intelligent Computing written by Kohei Arai and published by Springer. This book was released on 2018-11-01 with total page 1405 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, gathering the Proceedings of the 2018 Computing Conference, offers a remarkable collection of chapters covering a wide range of topics in intelligent systems, computing and their real-world applications. The Conference attracted a total of 568 submissions from pioneering researchers, scientists, industrial engineers, and students from all around the world. These submissions underwent a double-blind peer review process. Of those 568 submissions, 192 submissions (including 14 poster papers) were selected for inclusion in these proceedings. Despite computer science’s comparatively brief history as a formal academic discipline, it has made a number of fundamental contributions to science and society—in fact, along with electronics, it is a founding science of the current epoch of human history (‘the Information Age’) and a main driver of the Information Revolution. The goal of this conference is to provide a platform for researchers to present fundamental contributions, and to be a premier venue for academic and industry practitioners to share new ideas and development experiences. This book collects state of the art chapters on all aspects of Computer Science, from classical to intelligent. It covers both the theory and applications of the latest computer technologies and methodologies. Providing the state of the art in intelligent methods and techniques for solving real-world problems, along with a vision of future research, the book will be interesting and valuable for a broad readership.

Apache Hadoop YARN

Download Apache Hadoop YARN PDF Online Free

Author :
Publisher : Pearson Education
ISBN 13 : 0321934504
Total Pages : 336 pages
Book Rating : 4.3/5 (219 download)

DOWNLOAD NOW!


Book Synopsis Apache Hadoop YARN by : Arun C. Murthy

Download or read book Apache Hadoop YARN written by Arun C. Murthy and published by Pearson Education. This book was released on 2014 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Apache Hadoop is helping drive the Big Data revolution. Now, its data processing has been completely overhauled: Apache Hadoop YARN provides resource management at data center scale and easier ways to create distributed applications that process petabytes of data. And now in Apache HadoopTM YARN, two Hadoop technical leaders show you how to develop new applications and adapt existing code to fully leverage these revolutionary advances." -- From the Amazon

Hadoop MapReduce v2 Cookbook - Second Edition

Download Hadoop MapReduce v2 Cookbook - Second Edition PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1783285486
Total Pages : 322 pages
Book Rating : 4.7/5 (832 download)

DOWNLOAD NOW!


Book Synopsis Hadoop MapReduce v2 Cookbook - Second Edition by : Thilina Gunarathne

Download or read book Hadoop MapReduce v2 Cookbook - Second Edition written by Thilina Gunarathne and published by Packt Publishing Ltd. This book was released on 2015-02-25 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: If you are a Big Data enthusiast and wish to use Hadoop v2 to solve your problems, then this book is for you. This book is for Java programmers with little to moderate knowledge of Hadoop MapReduce. This is also a one-stop reference for developers and system admins who want to quickly get up to speed with using Hadoop v2. It would be helpful to have a basic knowledge of software development using Java and a basic working knowledge of Linux.

Hadoop in Practice

Download Hadoop in Practice PDF Online Free

Author :
Publisher : Manning Publications
ISBN 13 : 9781617292224
Total Pages : 512 pages
Book Rating : 4.2/5 (922 download)

DOWNLOAD NOW!


Book Synopsis Hadoop in Practice by : Alex Holmes

Download or read book Hadoop in Practice written by Alex Holmes and published by Manning Publications. This book was released on 2014-10-12 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summary Hadoop in Practice, Second Edition provides over 100 tested, instantly useful techniques that will help you conquer big data, using Hadoop. This revised new edition covers changes and new features in the Hadoop core architecture, including MapReduce 2. Brand new chapters cover YARN and integrating Kafka, Impala, and Spark SQL with Hadoop. You'll also get new and updated techniques for Flume, Sqoop, and Mahout, all of which have seen major new versions recently. In short, this is the most practical, up-to-date coverage of Hadoop available anywhere. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Book It's always a good time to upgrade your Hadoop skills! Hadoop in Practice, Second Edition provides a collection of 104 tested, instantly useful techniques for analyzing real-time streams, moving data securely, machine learning, managing large-scale clusters, and taming big data using Hadoop. This completely revised edition covers changes and new features in Hadoop core, including MapReduce 2 and YARN. You'll pick up hands-on best practices for integrating Spark, Kafka, and Impala with Hadoop, and get new and updated techniques for the latest versions of Flume, Sqoop, and Mahout. In short, this is the most practical, up-to-date coverage of Hadoop available. Readers need to know a programming language like Java and have basic familiarity with Hadoop. What's Inside Thoroughly updated for Hadoop 2 How to write YARN applications Integrate real-time technologies like Storm, Impala, and Spark Predictive analytics using Mahout and RR Readers need to know a programming language like Java and have basic familiarity with Hadoop. About the Author Alex Holmes works on tough big-data problems. He is a software engineer, author, speaker, and blogger specializing in large-scale Hadoop projects. Table of Contents PART 1 BACKGROUND AND FUNDAMENTALS Hadoop in a heartbeat Introduction to YARN PART 2 DATA LOGISTICS Data serialization—working with text and beyond Organizing and optimizing data in HDFS Moving data into and out of Hadoop PART 3 BIG DATA PATTERNS Applying MapReduce patterns to big data Utilizing data structures and algorithms at scale Tuning, debugging, and testing PART 4 BEYOND MAPREDUCE SQL on Hadoop Writing a YARN application

Mastering the MapReduce Framework

Download Mastering the MapReduce Framework PDF Online Free

Author :
Publisher : Cybellium Ltd
ISBN 13 :
Total Pages : 202 pages
Book Rating : 4.8/5 (631 download)

DOWNLOAD NOW!


Book Synopsis Mastering the MapReduce Framework by : Cybellium Ltd

Download or read book Mastering the MapReduce Framework written by Cybellium Ltd and published by Cybellium Ltd. This book was released on with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unleash the Power of Big Data Processing In the realm of big data, the MapReduce framework stands as a cornerstone, enabling the processing of massive datasets with unparalleled efficiency. "Mastering the MapReduce Framework" is your comprehensive guide to understanding and harnessing the capabilities of this transformative technology, equipping you with the skills needed to navigate the landscape of large-scale data processing. About the Book: As the volume of data continues to grow exponentially, traditional data processing methods fall short. The MapReduce framework emerges as a powerful solution, allowing organizations to process and analyze vast datasets in parallel, thereby unlocking insights and accelerating decision-making. "Mastering the MapReduce Framework" provides a deep dive into this technology, catering to both beginners and experienced professionals seeking to maximize their proficiency in big data processing. Key Features: Foundation Building: Begin by comprehending the fundamental concepts underlying MapReduce. Understand how the framework breaks down complex tasks into smaller, manageable components that can be processed concurrently. Parallel Processing: Dive into the intricacies of parallel processing, a cornerstone of MapReduce. Learn how data is partitioned and distributed across a cluster of machines, enabling lightning-fast computation. Map and Reduce Functions: Grasp the significance of map and reduce functions in the MapReduce paradigm. Learn how to structure these functions to transform and aggregate data efficiently. Hadoop Ecosystem: Explore the Hadoop ecosystem, which houses the MapReduce framework. Understand how Hadoop integrates with other tools to create a comprehensive big data processing environment. Optimizing Performance: Discover techniques for optimizing MapReduce performance. Learn about data locality, combiners, and partitioners that enhance efficiency and reduce resource consumption. Real-World Use Cases: Gain insights into real-world applications of MapReduce across industries. From web log analysis to recommendation systems, explore how the framework powers data-driven solutions. Challenges and Solutions: Explore the challenges of working with MapReduce, such as debugging and handling skewed data. Master strategies to address these challenges and ensure smooth execution. Why This Book Matters: In a data-driven world, the ability to process and extract insights from massive datasets is a competitive advantage. "Mastering the MapReduce Framework" empowers data engineers, analysts, and technology enthusiasts to tap into the potential of big data processing, enabling them to drive innovation and make data-driven decisions with confidence. Who Should Read This Book: Data Engineers: Enhance your big data processing skills with a deep understanding of MapReduce. Data Analysts: Grasp the principles that power large-scale data analysis and gain insights from big data. Technology Enthusiasts: Dive into the world of big data processing and stay ahead of emerging trends. Harness the Power of Big Data Processing: The era of big data requires sophisticated processing tools, and the MapReduce framework stands as a pioneer in this realm. "Mastering the MapReduce Framework" equips you with the knowledge needed to harness the power of MapReduce, unleashing the potential of big data processing and enabling you to navigate the complexities of large-scale data analysis with ease. Your journey to mastering the art of big data processing begins here. © 2023 Cybellium Ltd. All rights reserved. www.cybellium.com

Hadoop Operations

Download Hadoop Operations PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 144932729X
Total Pages : 298 pages
Book Rating : 4.4/5 (493 download)

DOWNLOAD NOW!


Book Synopsis Hadoop Operations by : Eric Sammer

Download or read book Hadoop Operations written by Eric Sammer and published by "O'Reilly Media, Inc.". This book was released on 2012-09-26 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: If you’ve been asked to maintain large and complex Hadoop clusters, this book is a must. Demand for operations-specific material has skyrocketed now that Hadoop is becoming the de facto standard for truly large-scale data processing in the data center. Eric Sammer, Principal Solution Architect at Cloudera, shows you the particulars of running Hadoop in production, from planning, installing, and configuring the system to providing ongoing maintenance. Rather than run through all possible scenarios, this pragmatic operations guide calls out what works, as demonstrated in critical deployments. Get a high-level overview of HDFS and MapReduce: why they exist and how they work Plan a Hadoop deployment, from hardware and OS selection to network requirements Learn setup and configuration details with a list of critical properties Manage resources by sharing a cluster across multiple groups Get a runbook of the most common cluster maintenance tasks Monitor Hadoop clusters—and learn troubleshooting with the help of real-world war stories Use basic tools and techniques to handle backup and catastrophic failure

Hadoop: The Definitive Guide

Download Hadoop: The Definitive Guide PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1449338771
Total Pages : 687 pages
Book Rating : 4.4/5 (493 download)

DOWNLOAD NOW!


Book Synopsis Hadoop: The Definitive Guide by : Tom White

Download or read book Hadoop: The Definitive Guide written by Tom White and published by "O'Reilly Media, Inc.". This book was released on 2012-05-10 with total page 687 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ready to unlock the power of your data? With this comprehensive guide, you’ll learn how to build and maintain reliable, scalable, distributed systems with Apache Hadoop. This book is ideal for programmers looking to analyze datasets of any size, and for administrators who want to set up and run Hadoop clusters. You’ll find illuminating case studies that demonstrate how Hadoop is used to solve specific problems. This third edition covers recent changes to Hadoop, including material on the new MapReduce API, as well as MapReduce 2 and its more flexible execution model (YARN). Store large datasets with the Hadoop Distributed File System (HDFS) Run distributed computations with MapReduce Use Hadoop’s data and I/O building blocks for compression, data integrity, serialization (including Avro), and persistence Discover common pitfalls and advanced features for writing real-world MapReduce programs Design, build, and administer a dedicated Hadoop cluster—or run Hadoop in the cloud Load data from relational databases into HDFS, using Sqoop Perform large-scale data processing with the Pig query language Analyze datasets with Hive, Hadoop’s data warehousing system Take advantage of HBase for structured and semi-structured data, and ZooKeeper for building distributed systems

Benchmarking, Measuring, and Optimizing

Download Benchmarking, Measuring, and Optimizing PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030495566
Total Pages : 371 pages
Book Rating : 4.0/5 (34 download)

DOWNLOAD NOW!


Book Synopsis Benchmarking, Measuring, and Optimizing by : Wanling Gao

Download or read book Benchmarking, Measuring, and Optimizing written by Wanling Gao and published by Springer Nature. This book was released on 2020-06-09 with total page 371 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the Second International Symposium on Benchmarking, Measuring, and Optimization, Bench 2019, held in Denver, CO, USA, in November 2019. The 20 full papers and 11 short papers presented were carefully reviewed and selected from 79 submissions. The papers are organized in topical sections named: Best Paper Session; AI Challenges on Cambircon using AIBenc; AI Challenges on RISC-V using AIBench; AI Challenges on X86 using AIBench; AI Challenges on 3D Face Recognition using AIBench; Benchmark; AI and Edge; Big Data; Datacenter; Performance Analysis; Scientific Computing.

Hadoop in Action

Download Hadoop in Action PDF Online Free

Author :
Publisher : Simon and Schuster
ISBN 13 : 1638352100
Total Pages : 471 pages
Book Rating : 4.6/5 (383 download)

DOWNLOAD NOW!


Book Synopsis Hadoop in Action by : Chuck Lam

Download or read book Hadoop in Action written by Chuck Lam and published by Simon and Schuster. This book was released on 2010-11-30 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hadoop in Action teaches readers how to use Hadoop and write MapReduce programs. The intended readers are programmers, architects, and project managers who have to process large amounts of data offline. Hadoop in Action will lead the reader from obtaining a copy of Hadoop to setting it up in a cluster and writing data analytic programs. The book begins by making the basic idea of Hadoop and MapReduce easier to grasp by applying the default Hadoop installation to a few easy-to-follow tasks, such as analyzing changes in word frequency across a body of documents. The book continues through the basic concepts of MapReduce applications developed using Hadoop, including a close look at framework components, use of Hadoop for a variety of data analysis tasks, and numerous examples of Hadoop in action. Hadoop in Action will explain how to use Hadoop and present design patterns and practices of programming MapReduce. MapReduce is a complex idea both conceptually and in its implementation, and Hadoop users are challenged to learn all the knobs and levers for running Hadoop. This book takes you beyond the mechanics of running Hadoop, teaching you to write meaningful programs in a MapReduce framework. This book assumes the reader will have a basic familiarity with Java, as most code examples will be written in Java. Familiarity with basic statistical concepts (e.g. histogram, correlation) will help the reader appreciate the more advanced data processing examples. Purchase of the print book comes with an offer of a free PDF, ePub, and Kindle eBook from Manning. Also available is all code from the book.

Benchmarking, Measuring, and Optimizing

Download Benchmarking, Measuring, and Optimizing PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030328139
Total Pages : 268 pages
Book Rating : 4.0/5 (33 download)

DOWNLOAD NOW!


Book Synopsis Benchmarking, Measuring, and Optimizing by : Chen Zheng

Download or read book Benchmarking, Measuring, and Optimizing written by Chen Zheng and published by Springer Nature. This book was released on 2019-10-15 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the First International Symposium on Benchmarking, Measuring, and Optimization, Bench 2018, held in Seattle, WA, USA, in December 2018. The 20 full papers presented were carefully reviewed and selected from 51 submissions. The papers are organized in topical sections named: AI Benchmarking; Cloud; Big Data; Modelling and Prediction; and Algorithm and Implementations.

Big Data Benchmarks, Performance Optimization, and Emerging Hardware

Download Big Data Benchmarks, Performance Optimization, and Emerging Hardware PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319130218
Total Pages : 227 pages
Book Rating : 4.3/5 (191 download)

DOWNLOAD NOW!


Book Synopsis Big Data Benchmarks, Performance Optimization, and Emerging Hardware by : Jianfeng Zhan

Download or read book Big Data Benchmarks, Performance Optimization, and Emerging Hardware written by Jianfeng Zhan and published by Springer. This book was released on 2014-11-10 with total page 227 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the thoroughly revised selected papers of the 4th and 5th workshops on Big Data Benchmarks, Performance Optimization, and Emerging Hardware, BPOE 4 and BPOE 5, held respectively in Salt Lake City, in March 2014, and in Hangzhou, in September 2014. The 16 papers presented were carefully reviewed and selected from 30 submissions. Both workshops focus on architecture and system support for big data systems, such as benchmarking; workload characterization; performance optimization and evaluation; emerging hardware.

Big Data Optimization: Recent Developments and Challenges

Download Big Data Optimization: Recent Developments and Challenges PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319302655
Total Pages : 492 pages
Book Rating : 4.3/5 (193 download)

DOWNLOAD NOW!


Book Synopsis Big Data Optimization: Recent Developments and Challenges by : Ali Emrouznejad

Download or read book Big Data Optimization: Recent Developments and Challenges written by Ali Emrouznejad and published by Springer. This book was released on 2016-05-26 with total page 492 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main objective of this book is to provide the necessary background to work with big data by introducing some novel optimization algorithms and codes capable of working in the big data setting as well as introducing some applications in big data optimization for both academics and practitioners interested, and to benefit society, industry, academia, and government. Presenting applications in a variety of industries, this book will be useful for the researchers aiming to analyses large scale data. Several optimization algorithms for big data including convergent parallel algorithms, limited memory bundle algorithm, diagonal bundle method, convergent parallel algorithms, network analytics, and many more have been explored in this book.

Machine Learning, Optimization, and Big Data

Download Machine Learning, Optimization, and Big Data PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319729268
Total Pages : 621 pages
Book Rating : 4.3/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning, Optimization, and Big Data by : Giuseppe Nicosia

Download or read book Machine Learning, Optimization, and Big Data written by Giuseppe Nicosia and published by Springer. This book was released on 2017-12-19 with total page 621 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the post-conference proceedings of the Third International Workshop on Machine Learning, Optimization, and Big Data, MOD 2017, held in Volterra, Italy, in September 2017. The 50 full papers presented were carefully reviewed and selected from 126 submissions. The papers cover topics in the field of machine learning, artificial intelligence, computational optimization and data science presenting a substantial array of ideas, technologies, algorithms, methods and applications.