Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Optimal Quadrature Formulas
Download Optimal Quadrature Formulas full books in PDF, epub, and Kindle. Read online Optimal Quadrature Formulas ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Optimal Quadrature Formulas by : Meishe Isakovich Levin
Download or read book Optimal Quadrature Formulas written by Meishe Isakovich Levin and published by . This book was released on 1979 with total page 132 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Quadrature Formulae by : A. Ghizzetti
Download or read book Quadrature Formulae written by A. Ghizzetti and published by Walter de Gruyter GmbH & Co KG. This book was released on 1970-12-31 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: No detailed description available for "Quadrature Formulae".
Book Synopsis The Theory of Splines and Their Applications by : J. H. Ahlberg
Download or read book The Theory of Splines and Their Applications written by J. H. Ahlberg and published by Elsevier. This book was released on 2016-06-03 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Theory of Splines and Their Applications discusses spline theory, the theory of cubic splines, polynomial splines of higher degree, generalized splines, doubly cubic splines, and two-dimensional generalized splines. The book explains the equations of the spline, procedures for applications of the spline, convergence properties, equal-interval splines, and special formulas for numerical differentiation or integration. The text explores the intrinsic properties of cubic splines including the Hilbert space interpretation, transformations defined by a mesh, and some connections with space technology concerning the payload of a rocket. The book also discusses the theory of polynomial splines of odd degree which can be approached through algebraically (which depends primarily on the examination in detail of the linear system of equations defining the spline). The theory can also be approached intrinsically (which exploits the consequences of basic integral relations existing between functions and approximating spline functions). The text also considers the second integral relation, raising the order of convergence, and the limits on the order of convergence. The book will prove useful for mathematicians, physicist, engineers, or academicians in the field of technology and applied mathematics.
Book Synopsis Elements of the General Theory of Optimal Algorithms by : Ivan V. Sergienko
Download or read book Elements of the General Theory of Optimal Algorithms written by Ivan V. Sergienko and published by Springer Nature. This book was released on 2022-01-11 with total page 387 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this monograph, the authors develop a methodology that allows one to construct and substantiate optimal and suboptimal algorithms to solve problems in computational and applied mathematics. Throughout the book, the authors explore well-known and proposed algorithms with a view toward analyzing their quality and the range of their efficiency. The concept of the approach taken is based on several theories (of computations, of optimal algorithms, of interpolation, interlination, and interflatation of functions, to name several). Theoretical principles and practical aspects of testing the quality of algorithms and applied software, are a major component of the exposition. The computer technology in construction of T-efficient algorithms for computing ε-solutions to problems of computational and applied mathematics, is also explored. The readership for this monograph is aimed at scientists, postgraduate students, advanced students, and specialists dealing with issues of developing algorithmic and software support for the solution of problems of computational and applied mathematics.
Book Synopsis Methods of Numerical Integration by : Philip J. Davis
Download or read book Methods of Numerical Integration written by Philip J. Davis and published by Academic Press. This book was released on 2014-05-10 with total page 628 pages. Available in PDF, EPUB and Kindle. Book excerpt: Methods of Numerical Integration, Second Edition describes the theoretical and practical aspects of major methods of numerical integration. Numerical integration is the study of how the numerical value of an integral can be found. This book contains six chapters and begins with a discussion of the basic principles and limitations of numerical integration. The succeeding chapters present the approximate integration rules and formulas over finite and infinite intervals. These topics are followed by a review of error analysis and estimation, as well as the application of functional analysis to numerical integration. A chapter describes the approximate integration in two or more dimensions. The final chapter looks into the goals and processes of automatic integration, with particular attention to the application of Tschebyscheff polynomials. This book will be of great value to theoreticians and computer programmers.
Book Synopsis Methods of Approximation Theory in Complex Analysis and Mathematical Physics by : Andrei A. Gonchar
Download or read book Methods of Approximation Theory in Complex Analysis and Mathematical Physics written by Andrei A. Gonchar and published by Springer. This book was released on 2008-01-03 with total page 225 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book incorporates research papers and surveys written by participants ofan International Scientific Programme on Approximation Theory jointly supervised by Institute for Constructive Mathematics of University of South Florida at Tampa, USA and the Euler International Mathematical Instituteat St. Petersburg, Russia. The aim of the Programme was to present new developments in Constructive Approximation Theory. The topics of the papers are: asymptotic behaviour of orthogonal polynomials, rational approximation of classical functions, quadrature formulas, theory of n-widths, nonlinear approximation in Hardy algebras,numerical results on best polynomial approximations, wavelet analysis. FROM THE CONTENTS: E.A. Rakhmanov: Strong asymptotics for orthogonal polynomials associated with exponential weights on R.- A.L. Levin, E.B. Saff: Exact Convergence Rates for Best Lp Rational Approximation to the Signum Function and for Optimal Quadrature in Hp.- H. Stahl: Uniform Rational Approximation of x .- M. Rahman, S.K. Suslov: Classical Biorthogonal Rational Functions.- V.P. Havin, A. Presa Sague: Approximation properties of harmonic vector fields and differential forms.- O.G. Parfenov: Extremal problems for Blaschke products and N-widths.- A.J. Carpenter, R.S. Varga: Some Numerical Results on Best Uniform Polynomial Approximation of x on 0,1 .- J.S. Geronimo: Polynomials Orthogonal on the Unit Circle with Random Recurrence Coefficients.- S. Khrushchev: Parameters of orthogonal polynomials.- V.N. Temlyakov: The universality of the Fibonacci cubature formulas.
Book Synopsis Generalized Functions in Mathematical Physics by : Vasiliĭ Sergeevich Vladimirov
Download or read book Generalized Functions in Mathematical Physics written by Vasiliĭ Sergeevich Vladimirov and published by . This book was released on 1979 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Matrices, Moments and Quadrature with Applications by : Gene H. Golub
Download or read book Matrices, Moments and Quadrature with Applications written by Gene H. Golub and published by Princeton University Press. This book was released on 2009-12-07 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: This computationally oriented book describes and explains the mathematical relationships among matrices, moments, orthogonal polynomials, quadrature rules, and the Lanczos and conjugate gradient algorithms. The book bridges different mathematical areas to obtain algorithms to estimate bilinear forms involving two vectors and a function of the matrix. The first part of the book provides the necessary mathematical background and explains the theory. The second part describes the applications and gives numerical examples of the algorithms and techniques developed in the first part. Applications addressed in the book include computing elements of functions of matrices; obtaining estimates of the error norm in iterative methods for solving linear systems and computing parameters in least squares and total least squares; and solving ill-posed problems using Tikhonov regularization. This book will interest researchers in numerical linear algebra and matrix computations, as well as scientists and engineers working on problems involving computation of bilinear forms.
Download or read book Quadrature Theory written by Helmut Brass and published by American Mathematical Soc.. This book was released on 2011-10-12 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: Every book on numerical analysis covers methods for the approximate calculation of definite integrals. The authors of this book provide a complementary treatment of the topic by presenting a coherent theory of quadrature methods that encompasses many deep and elegant results as well as a large number of interesting (solved and open) problems. The inclusion of the word ``theory'' in the title highlights the authors' emphasis on analytical questions, such as the existence and structure of quadrature methods and selection criteria based on strict error bounds for quadrature rules. Systematic analyses of this kind rely on certain properties of the integrand, called ``co-observations,'' which form the central organizing principle for the authors' theory, and distinguish their book from other texts on numerical integration. A wide variety of co-observations are examined, as a detailed understanding of these is useful for solving problems in practical contexts. While quadrature theory is often viewed as a branch of numerical analysis, its influence extends much further. It has been the starting point of many far-reaching generalizations in various directions, as well as a testing ground for new ideas and concepts. The material in this book should be accessible to anyone who has taken the standard undergraduate courses in linear algebra, advanced calculus, and real analysis.
Book Synopsis Computed Tomography by : Thorsten M. Buzug
Download or read book Computed Tomography written by Thorsten M. Buzug and published by Springer Science & Business Media. This book was released on 2008-05-20 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume provides an overview of X-ray technology and the historical development of modern CT systems. The main focus of the book is a detailed derivation of reconstruction algorithms in 2D and modern 3D cone-beam systems. A thorough analysis of CT artifacts and a discussion of practical issues such as dose considerations give further insight into current CT systems. Although written mainly for graduate students, practitioners will also benefit from this book.
Book Synopsis The Theory of Cubature Formulas by : S.L. Sobolev
Download or read book The Theory of Cubature Formulas written by S.L. Sobolev and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 427 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume considers various methods for constructing cubature and quadrature formulas of arbitrary degree. These formulas are intended to approximate the calculation of multiple and conventional integrals over a bounded domain of integration. The latter is assumed to have a piecewise-smooth boundary and to be arbitrary in other aspects. Particular emphasis is placed on invariant cubature formulas and those for a cube, a simplex, and other polyhedra. Here, the techniques of functional analysis and partial differential equations are applied to the classical problem of numerical integration, to establish many important and deep analytical properties of cubature formulas. The prerequisites of the theory of many-dimensional discrete function spaces and the theory of finite differences are concisely presented. Special attention is paid to constructing and studying the optimal cubature formulas in Sobolev spaces. As an asymptotically optimal sequence of cubature formulas, a many-dimensional abstraction of the Gregory quadrature is indicated. Audience: This book is intended for researchers having a basic knowledge of functional analysis who are interested in the applications of modern theoretical methods to numerical mathematics.
Book Synopsis A General Theory of Optimal Algorithms by : Joseph Frederick Traub
Download or read book A General Theory of Optimal Algorithms written by Joseph Frederick Traub and published by . This book was released on 1980 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this monograph is to create a general framework for the study of optimal algorithms for problems that are solved approximately. For generality the setting is abstract, but we present many applications to practical problems and provide examples to illustrate concepts and major theorems. The work presented here is motivated by research in many fields. Influential have been questions, concepts, and results from complexity theory, algorithmic analysis, applied mathematics and numerical analysis, the mathematical theory of approximation (particularly the work on n-widths in the sense of Gelfand and Kolmogorov), applied approximation theory (particularly the theory of splines), as well as earlier work on optimal algorithms. But many of the questions we ask (see Overview) are new. We present a different view of algorithms and complexity and must request the reader's
Book Synopsis Approximation Theory and Approximation Practice, Extended Edition by : Lloyd N. Trefethen
Download or read book Approximation Theory and Approximation Practice, Extended Edition written by Lloyd N. Trefethen and published by SIAM. This book was released on 2019-01-01 with total page 377 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a textbook on classical polynomial and rational approximation theory for the twenty-first century. Aimed at advanced undergraduates and graduate students across all of applied mathematics, it uses MATLAB to teach the fields most important ideas and results. Approximation Theory and Approximation Practice, Extended Edition differs fundamentally from other works on approximation theory in a number of ways: its emphasis is on topics close to numerical algorithms; concepts are illustrated with Chebfun; and each chapter is a PUBLISHable MATLAB M-file, available online. The book centers on theorems and methods for analytic functions, which appear so often in applications, rather than on functions at the edge of discontinuity with their seductive theoretical challenges. Original sources are cited rather than textbooks, and each item in the bibliography is accompanied by an editorial comment. In addition, each chapter has a collection of exercises, which span a wide range from mathematical theory to Chebfun-based numerical experimentation. This textbook is appropriate for advanced undergraduate or graduate students who have an understanding of numerical analysis and complex analysis. It is also appropriate for seasoned mathematicians who use MATLAB.
Book Synopsis Computational Methods for Integral Equations by : L. M. Delves
Download or read book Computational Methods for Integral Equations written by L. M. Delves and published by CUP Archive. This book was released on 1985 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides a readable account of techniques for numerical solutions.
Book Synopsis Theory and Applications of Gaussian Quadrature Methods by : Narayan Kovvali
Download or read book Theory and Applications of Gaussian Quadrature Methods written by Narayan Kovvali and published by Springer Nature. This book was released on 2022-05-31 with total page 57 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gaussian quadrature is a powerful technique for numerical integration that falls under the broad category of spectral methods. The purpose of this work is to provide an introduction to the theory and practice of Gaussian quadrature. We study the approximation theory of trigonometric and orthogonal polynomials and related functions and examine the analytical framework of Gaussian quadrature. We discuss Gaussian quadrature for bandlimited functions, a topic inspired by some recent developments in the analysis of prolate spheroidal wave functions. Algorithms for the computation of the quadrature nodes and weights are described. Several applications of Gaussian quadrature are given, ranging from the evaluation of special functions to pseudospectral methods for solving differential equations. Software realization of select algorithms is provided. Table of Contents: Introduction / Approximating with Polynomials and Related Functions / Gaussian Quadrature / Applications / Links to Mathematical Software
Book Synopsis Differential Quadrature and Its Application in Engineering by : Chang Shu
Download or read book Differential Quadrature and Its Application in Engineering written by Chang Shu and published by Springer Science & Business Media. This book was released on 2000-01-14 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the past few years, the differential quadrature method has been applied extensively in engineering. This book, aimed primarily at practising engineers, scientists and graduate students, gives a systematic description of the mathematical fundamentals of differential quadrature and its detailed implementation in solving Helmholtz problems and problems of flow, structure and vibration. Differential quadrature provides a global approach to numerical discretization, which approximates the derivatives by a linear weighted sum of all the functional values in the whole domain. Following the analysis of function approximation and the analysis of a linear vector space, it is shown in the book that the weighting coefficients of the polynomial-based, Fourier expansion-based, and exponential-based differential quadrature methods can be computed explicitly. It is also demonstrated that the polynomial-based differential quadrature method is equivalent to the highest-order finite difference scheme. Furthermore, the relationship between differential quadrature and conventional spectral collocation is analysed. The book contains material on: - Linear Vector Space Analysis and the Approximation of a Function; - Polynomial-, Fourier Expansion- and Exponential-based Differential Quadrature; - Differential Quadrature Weighting Coefficient Matrices; - Solution of Differential Quadrature-resultant Equations; - The Solution of Incompressible Navier-Stokes and Helmholtz Equations; - Structural and Vibrational Analysis Applications; - Generalized Integral Quadrature and its Application in the Solution of Boundary Layer Equations. Three FORTRAN programs for simulation of driven cavity flow, vibration analysis of plate and Helmholtz eigenvalue problems respectively, are appended. These sample programs should give the reader a better understanding of differential quadrature and can easily be modified to solve the readers own engineering problems.
Book Synopsis Analytic Number Theory, Approximation Theory, and Special Functions by : Gradimir V. Milovanović
Download or read book Analytic Number Theory, Approximation Theory, and Special Functions written by Gradimir V. Milovanović and published by Springer. This book was released on 2014-07-08 with total page 873 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, in honor of Hari M. Srivastava, discusses essential developments in mathematical research in a variety of problems. It contains thirty-five articles, written by eminent scientists from the international mathematical community, including both research and survey works. Subjects covered include analytic number theory, combinatorics, special sequences of numbers and polynomials, analytic inequalities and applications, approximation of functions and quadratures, orthogonality and special and complex functions. The mathematical results and open problems discussed in this book are presented in a simple and self-contained manner. The book contains an overview of old and new results, methods, and theories toward the solution of longstanding problems in a wide scientific field, as well as new results in rapidly progressing areas of research. The book will be useful for researchers and graduate students in the fields of mathematics, physics and other computational and applied sciences.