Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
On The Geometry Of Some Special Projective Varieties
Download On The Geometry Of Some Special Projective Varieties full books in PDF, epub, and Kindle. Read online On The Geometry Of Some Special Projective Varieties ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis On the Geometry of Some Special Projective Varieties by : Francesco Russo
Download or read book On the Geometry of Some Special Projective Varieties written by Francesco Russo and published by Springer. This book was released on 2016-01-25 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: Providing an introduction to both classical and modern techniques in projective algebraic geometry, this monograph treats the geometrical properties of varieties embedded in projective spaces, their secant and tangent lines, the behavior of tangent linear spaces, the algebro-geometric and topological obstructions to their embedding into smaller projective spaces, and the classification of extremal cases. It also provides a solution of Hartshorne’s Conjecture on Complete Intersections for the class of quadratic manifolds and new short proofs of previously known results, using the modern tools of Mori Theory and of rationally connected manifolds. The new approach to some of the problems considered can be resumed in the principle that, instead of studying a special embedded manifold uniruled by lines, one passes to analyze the original geometrical property on the manifold of lines passing through a general point and contained in the manifold. Once this embedded manifold, usually of lower codimension, is classified, one tries to reconstruct the original manifold, following a principle appearing also in other areas of geometry such as projective differential geometry or complex geometry.
Book Synopsis The Geometry of some special Arithmetic Quotients by : Bruce Hunt
Download or read book The Geometry of some special Arithmetic Quotients written by Bruce Hunt and published by Springer. This book was released on 2006-11-14 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book discusses a series of higher-dimensional moduli spaces, of abelian varieties, cubic and K3 surfaces, which have embeddings in projective spaces as very special algebraic varieties. Many of these were known classically, but in the last chapter a new such variety, a quintic fourfold, is introduced and studied. The text will be of interest to all involved in the study of moduli spaces with symmetries, and contains in addition a wealth of material which has been only accessible in very old sources, including a detailed presentation of the solution of the equation of 27th degree for the lines on a cubic surface.
Book Synopsis Lectures on Curves, Surfaces and Projective Varieties by : Mauro Beltrametti
Download or read book Lectures on Curves, Surfaces and Projective Varieties written by Mauro Beltrametti and published by European Mathematical Society. This book was released on 2009 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a wide-ranging introduction to algebraic geometry along classical lines. It consists of lectures on topics in classical algebraic geometry, including the basic properties of projective algebraic varieties, linear systems of hypersurfaces, algebraic curves (with special emphasis on rational curves), linear series on algebraic curves, Cremona transformations, rational surfaces, and notable examples of special varieties like the Segre, Grassmann, and Veronese varieties. An integral part and special feature of the presentation is the inclusion of many exercises, not easy to find in the literature and almost all with complete solutions. The text is aimed at students in the last two years of an undergraduate program in mathematics. It contains some rather advanced topics suitable for specialized courses at the advanced undergraduate or beginning graduate level, as well as interesting topics for a senior thesis. The prerequisites have been deliberately limited to basic elements of projective geometry and abstract algebra. Thus, for example, some knowledge of the geometry of subspaces and properties of fields is assumed. The book will be welcomed by teachers and students of algebraic geometry who are seeking a clear and panoramic path leading from the basic facts about linear subspaces, conics and quadrics to a systematic discussion of classical algebraic varieties and the tools needed to study them. The text provides a solid foundation for approaching more advanced and abstract literature.
Book Synopsis Algebraic Geometry I by : David Mumford
Download or read book Algebraic Geometry I written by David Mumford and published by Springer. This book was released on 1976 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the reviews: "Although several textbooks on modern algebraic geometry have been published in the meantime, Mumford's "Volume I" is, together with its predecessor the red book of varieties and schemes, now as before one of the most excellent and profound primers of modern algebraic geometry. Both books are just true classics!" Zentralblatt
Book Synopsis Automorphisms in Birational and Affine Geometry by : Ivan Cheltsov
Download or read book Automorphisms in Birational and Affine Geometry written by Ivan Cheltsov and published by Springer. This book was released on 2014-06-11 with total page 509 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main focus of this volume is on the problem of describing the automorphism groups of affine and projective varieties, a classical subject in algebraic geometry where, in both cases, the automorphism group is often infinite dimensional. The collection covers a wide range of topics and is intended for researchers in the fields of classical algebraic geometry and birational geometry (Cremona groups) as well as affine geometry with an emphasis on algebraic group actions and automorphism groups. It presents original research and surveys and provides a valuable overview of the current state of the art in these topics. Bringing together specialists from projective, birational algebraic geometry and affine and complex algebraic geometry, including Mori theory and algebraic group actions, this book is the result of ensuing talks and discussions from the conference “Groups of Automorphisms in Birational and Affine Geometry” held in October 2012, at the CIRM, Levico Terme, Italy. The talks at the conference highlighted the close connections between the above-mentioned areas and promoted the exchange of knowledge and methods from adjacent fields.
Book Synopsis Algebraic Curves and Riemann Surfaces by : Rick Miranda
Download or read book Algebraic Curves and Riemann Surfaces written by Rick Miranda and published by American Mathematical Soc.. This book was released on 1995 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, Miranda takes the approach that algebraic curves are best encountered for the first time over the complex numbers, where the reader's classical intuition about surfaces, integration, and other concepts can be brought into play. Therefore, many examples of algebraic curves are presented in the first chapters. In this way, the book begins as a primer on Riemann surfaces, with complex charts and meromorphic functions taking centre stage. But the main examples come fromprojective curves, and slowly but surely the text moves toward the algebraic category. Proofs of the Riemann-Roch and Serre Dualtiy Theorems are presented in an algebraic manner, via an adaptation of the adelic proof, expressed completely in terms of solving a Mittag-Leffler problem. Sheaves andcohomology are introduced as a unifying device in the later chapters, so that their utility and naturalness are immediately obvious. Requiring a background of one term of complex variable theory and a year of abstract algebra, this is an excellent graduate textbook for a second-term course in complex variables or a year-long course in algebraic geometry.
Book Synopsis Complex Projective Geometry by : G. Ellingsrud
Download or read book Complex Projective Geometry written by G. Ellingsrud and published by Cambridge University Press. This book was released on 1992-07-30 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: A volume of papers describing new methods in algebraic geometry.
Book Synopsis Complex Abelian Varieties by : Herbert Lange
Download or read book Complex Abelian Varieties written by Herbert Lange and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 443 pages. Available in PDF, EPUB and Kindle. Book excerpt: Abelian varieties are special examples of projective varieties. As such theycan be described by a set of homogeneous polynomial equations. The theory ofabelian varieties originated in the beginning of the ninetheenth centrury with the work of Abel and Jacobi. The subject of this book is the theory of abelian varieties over the field of complex numbers, and it covers the main results of the theory, both classic and recent, in modern language. It is intended to give a comprehensive introduction to the field, but also to serve as a reference. The focal topics are the projective embeddings of an abelian variety, their equations and geometric properties. Moreover several moduli spaces of abelian varieties with additional structure are constructed. Some special results onJacobians and Prym varieties allow applications to the theory of algebraic curves. The main tools for the proofs are the theta group of a line bundle, introduced by Mumford, and the characteristics, to be associated to any nondegenerate line bundle. They are a direct generalization of the classical notion of characteristics of theta functions.
Book Synopsis Determinantal Ideals of Square Linear Matrices by : Zaqueu Ramos
Download or read book Determinantal Ideals of Square Linear Matrices written by Zaqueu Ramos and published by Springer Nature. This book was released on with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis The Adjunction Theory of Complex Projective Varieties by : Mauro C. Beltrametti
Download or read book The Adjunction Theory of Complex Projective Varieties written by Mauro C. Beltrametti and published by Walter de Gruyter. This book was released on 2011-06-03 with total page 421 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of the series is to present new and important developments in pure and applied mathematics. Well established in the community over two decades, it offers a large library of mathematics including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers wishing to thoroughly study the topic. Editorial Board Lev Birbrair, Universidade Federal do Ceará, Fortaleza, Brasil Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany
Author :Igor Rostislavovich Shafarevich Publisher :Springer Science & Business Media ISBN 13 :9783540575542 Total Pages :292 pages Book Rating :4.5/5 (755 download)
Book Synopsis Basic Algebraic Geometry 2 by : Igor Rostislavovich Shafarevich
Download or read book Basic Algebraic Geometry 2 written by Igor Rostislavovich Shafarevich and published by Springer Science & Business Media. This book was released on 1994 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second volume of Shafarevich's introductory book on algebraic geometry focuses on schemes, complex algebraic varieties and complex manifolds. As with Volume 1 the author has revised the text and added new material, e.g. a section on real algebraic curves. Although the material is more advanced than in Volume 1 the algebraic apparatus is kept to a minimum making the book accessible to non-specialists. It can be read independently of Volume 1 and is suitable for beginning graduate students in mathematics as well as in theoretical physics.
Download or read book Lefschetz Properties written by Uwe Nagel and published by Springer Nature. This book was released on with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Differential Geometry of Varieties with Degenerate Gauss Maps by : Maks A. Akivis
Download or read book Differential Geometry of Varieties with Degenerate Gauss Maps written by Maks A. Akivis and published by Springer Science & Business Media. This book was released on 2006-04-18 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book surveys the differential geometry of varieties with degenerate Gauss maps, using moving frames and exterior differential forms as well as tensor methods. The authors illustrate the structure of varieties with degenerate Gauss maps, determine the singular points and singular varieties, find focal images and construct a classification of the varieties with degenerate Gauss maps.
Book Synopsis An Invitation to Algebraic Geometry by : Karen E. Smith
Download or read book An Invitation to Algebraic Geometry written by Karen E. Smith and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 173 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a description of the underlying principles of algebraic geometry, some of its important developments in the twentieth century, and some of the problems that occupy its practitioners today. It is intended for the working or the aspiring mathematician who is unfamiliar with algebraic geometry but wishes to gain an appreciation of its foundations and its goals with a minimum of prerequisites. Few algebraic prerequisites are presumed beyond a basic course in linear algebra.
Download or read book Algebraic Geometry written by Joe Harris and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book succeeds brilliantly by concentrating on a number of core topics...and by treating them in a hugely rich and varied way. The author ensures that the reader will learn a large amount of classical material and perhaps more importantly, will also learn that there is no one approach to the subject. The essence lies in the range and interplay of possible approaches. The author is to be congratulated on a work of deep and enthusiastic scholarship." --MATHEMATICAL REVIEWS
Book Synopsis Algebraic Geometry by : Robin Hartshorne
Download or read book Algebraic Geometry written by Robin Hartshorne and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 511 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to abstract algebraic geometry, with the only prerequisites being results from commutative algebra, which are stated as needed, and some elementary topology. More than 400 exercises distributed throughout the book offer specific examples as well as more specialised topics not treated in the main text, while three appendices present brief accounts of some areas of current research. This book can thus be used as textbook for an introductory course in algebraic geometry following a basic graduate course in algebra. Robin Hartshorne studied algebraic geometry with Oscar Zariski and David Mumford at Harvard, and with J.-P. Serre and A. Grothendieck in Paris. He is the author of "Residues and Duality", "Foundations of Projective Geometry", "Ample Subvarieties of Algebraic Varieties", and numerous research titles.
Book Synopsis Classical Algebraic Geometry by : Igor V. Dolgachev
Download or read book Classical Algebraic Geometry written by Igor V. Dolgachev and published by Cambridge University Press. This book was released on 2012-08-16 with total page 653 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algebraic geometry has benefited enormously from the powerful general machinery developed in the latter half of the twentieth century. The cost has been that much of the research of previous generations is in a language unintelligible to modern workers, in particular, the rich legacy of classical algebraic geometry, such as plane algebraic curves of low degree, special algebraic surfaces, theta functions, Cremona transformations, the theory of apolarity and the geometry of lines in projective spaces. The author's contemporary approach makes this legacy accessible to modern algebraic geometers and to others who are interested in applying classical results. The vast bibliography of over 600 references is complemented by an array of exercises that extend or exemplify results given in the book.