Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
On The First Initial Boundary Value Problem For Parabolic Equations
Download On The First Initial Boundary Value Problem For Parabolic Equations full books in PDF, epub, and Kindle. Read online On The First Initial Boundary Value Problem For Parabolic Equations ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Initial-boundary Value Problems and the Navier-Stokes Equations by : Heinz-Otto Kreiss
Download or read book Initial-boundary Value Problems and the Navier-Stokes Equations written by Heinz-Otto Kreiss and published by SIAM. This book was released on 1989-01-01 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: Annotation This book provides an introduction to the vast subject of initial and initial-boundary value problems for PDEs, with an emphasis on applications to parabolic and hyperbolic systems. The Navier-Stokes equations for compressible and incompressible flows are taken as an example to illustrate the results. Researchers and graduate students in applied mathematics and engineering will find Initial-Boundary Value Problems and the Navier-Stokes Equations invaluable. The subjects addressed in the book, such as the well-posedness of initial-boundary value problems, are of frequent interest when PDEs are used in modeling or when they are solved numerically. The reader will learn what well-posedness or ill-posedness means and how it can be demonstrated for concrete problems. There are many new results, in particular on the Navier-Stokes equations. The direct approach to the subject still gives a valuable introduction to an important area of applied analysis.
Book Synopsis Nonlinear Parabolic and Elliptic Equations by : C.V. Pao
Download or read book Nonlinear Parabolic and Elliptic Equations written by C.V. Pao and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 786 pages. Available in PDF, EPUB and Kindle. Book excerpt: In response to the growing use of reaction diffusion problems in many fields, this monograph gives a systematic treatment of a class of nonlinear parabolic and elliptic differential equations and their applications these problems. It is an important reference for mathematicians and engineers, as well as a practical text for graduate students.
Book Synopsis Linear and Quasi-linear Equations of Parabolic Type by : Olʹga A. Ladyženskaja
Download or read book Linear and Quasi-linear Equations of Parabolic Type written by Olʹga A. Ladyženskaja and published by American Mathematical Soc.. This book was released on 1988 with total page 74 pages. Available in PDF, EPUB and Kindle. Book excerpt: Equations of parabolic type are encountered in many areas of mathematics and mathematical physics, and those encountered most frequently are linear and quasi-linear parabolic equations of the second order. In this volume, boundary value problems for such equations are studied from two points of view: solvability, unique or otherwise, and the effect of smoothness properties of the functions entering the initial and boundary conditions on the smoothness of the solutions.
Book Synopsis Nonlinear Second Order Parabolic Equations by : Mingxin Wang
Download or read book Nonlinear Second Order Parabolic Equations written by Mingxin Wang and published by CRC Press. This book was released on 2021-05-12 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: The parabolic partial differential equations model one of the most important processes in the real-world: diffusion. Whether it is the diffusion of energy in space-time, the diffusion of species in ecology, the diffusion of chemicals in biochemical processes, or the diffusion of information in social networks, diffusion processes are ubiquitous and crucial in the physical and natural world as well as our everyday lives. This book is self-contained and covers key topics such as the Lp theory and Schauder theory, maximum principle, comparison principle, regularity and uniform estimates, initial-boundary value problems of semilinear parabolic scalar equations and weakly coupled parabolic systems, the upper and lower solutions method, monotone properties and long-time behaviours of solutions, convergence of solutions and stability of equilibrium solutions, global solutions and finite time blowup. It also touches on periodic boundary value problems, free boundary problems, and semigroup theory. The book covers major theories and methods of the field, including topics that are useful but hard to find elsewhere. This book is based on tried and tested teaching materials used at the Harbin Institute of Technology over the past ten years. Special care was taken to make the book suitable for classroom teaching as well as for self-study among graduate students. About the Author: Mingxin Wang is Professor of Mathematics at Harbin Institute of Technology, China. He has published ten monographs and textbooks and 260 papers. He is also a supervisor of 30 PhD students.
Book Synopsis Differential and Integral Inequalities by : Dorin Andrica
Download or read book Differential and Integral Inequalities written by Dorin Andrica and published by Springer Nature. This book was released on 2019-11-14 with total page 848 pages. Available in PDF, EPUB and Kindle. Book excerpt: Theories, methods and problems in approximation theory and analytic inequalities with a focus on differential and integral inequalities are analyzed in this book. Fundamental and recent developments are presented on the inequalities of Abel, Agarwal, Beckenbach, Bessel, Cauchy–Hadamard, Chebychev, Markov, Euler’s constant, Grothendieck, Hilbert, Hardy, Carleman, Landau–Kolmogorov, Carlson, Bernstein–Mordell, Gronwall, Wirtinger, as well as inequalities of functions with their integrals and derivatives. Each inequality is discussed with proven results, examples and various applications. Graduate students and advanced research scientists in mathematical analysis will find this reference essential to their understanding of differential and integral inequalities. Engineers, economists, and physicists will find the highly applicable inequalities practical and useful to their research.
Book Synopsis Partial Differential Equations in China by : Chaohao Gu
Download or read book Partial Differential Equations in China written by Chaohao Gu and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the past few years there has been a fruitful exchange of expertise on the subject of partial differential equations (PDEs) between mathematicians from the People's Republic of China and the rest of the world. The goal of this collection of papers is to summarize and introduce the historical progress of the development of PDEs in China from the 1950s to the 1980s. The results presented here were mainly published before the 1980s, but, having been printed in the Chinese language, have not reached the wider audience they deserve. Topics covered include, among others, nonlinear hyperbolic equations, nonlinear elliptic equations, nonlinear parabolic equations, mixed equations, free boundary problems, minimal surfaces in Riemannian manifolds, microlocal analysis and solitons. For mathematicians and physicists interested in the historical development of PDEs in the People's Republic of China.
Book Synopsis Nonlinear Parabolic Equations and Hyperbolic-Parabolic Coupled Systems by : Songmu Zheng
Download or read book Nonlinear Parabolic Equations and Hyperbolic-Parabolic Coupled Systems written by Songmu Zheng and published by CRC Press. This book was released on 1995-08-08 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph is devoted to the global existence, uniqueness and asymptotic behaviour of smooth solutions to both initial value problems and initial boundary value problems for nonlinear parabolic equations and hyperbolic parabolic coupled systems. Most of the material is based on recent research carried out by the author and his collaborators. The book can be divided into two parts. In the first part, the results on decay of solutions to nonlinear parabolic equations and hyperbolic parabolic coupled systems are obtained, and a chapter is devoted to the global existence of small smooth solutions to fully nonlinear parabolic equations and quasilinear hyperbolic parabolic coupled systems. Applications of the results to nonlinear thermoelasticity and fluid dynamics are also shown. Some nonlinear parabolic equations and coupled systems arising from the study of phase transitions are investigated in the second part of the book. The global existence, uniqueness and asymptotic behaviour of smooth solutions with arbitrary initial data are obtained. The final chapter is further devoted to related topics: multiplicity of equilibria and the existence of a global attractor, inertial manifold and inertial set. A knowledge of partial differential equations and Sobolev spaces is assumed. As an aid to the reader, the related concepts and results are collected and the relevant references given in the first chapter. The work will be of interest to researchers and graduate students in pure and applied mathematics, mathematical physics and applied sciences.
Book Synopsis Partial Differential Equations of Parabolic Type by : Avner Friedman
Download or read book Partial Differential Equations of Parabolic Type written by Avner Friedman and published by Courier Corporation. This book was released on 2013-08-16 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: With this book, even readers unfamiliar with the field can acquire sufficient background to understand research literature related to the theory of parabolic and elliptic equations. 1964 edition.
Book Synopsis Linear and Nonlinear Parabolic Complex Equations by : Guo Chun Wen
Download or read book Linear and Nonlinear Parabolic Complex Equations written by Guo Chun Wen and published by World Scientific. This book was released on 1999 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This is a very interesting book written by a well-known expert on complex methods in partial differential equations. It contains many recent results, many of them published for the first time, some published originally in Chinese".Mathematical Reviews
Book Synopsis Numerical Methods for Elliptic and Parabolic Partial Differential Equations by : Peter Knabner
Download or read book Numerical Methods for Elliptic and Parabolic Partial Differential Equations written by Peter Knabner and published by Springer Science & Business Media. This book was released on 2003-06-26 with total page 437 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text provides an application oriented introduction to the numerical methods for partial differential equations. It covers finite difference, finite element, and finite volume methods, interweaving theory and applications throughout. The book examines modern topics such as adaptive methods, multilevel methods, and methods for convection-dominated problems and includes detailed illustrations and extensive exercises.
Book Synopsis The Boundary Value Problems of Mathematical Physics by : O.A. Ladyzhenskaya
Download or read book The Boundary Value Problems of Mathematical Physics written by O.A. Ladyzhenskaya and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the present edition I have included "Supplements and Problems" located at the end of each chapter. This was done with the aim of illustrating the possibilities of the methods contained in the book, as well as with the desire to make good on what I have attempted to do over the course of many years for my students-to awaken their creativity, providing topics for independent work. The source of my own initial research was the famous two-volume book Methods of Mathematical Physics by D. Hilbert and R. Courant, and a series of original articles and surveys on partial differential equations and their applications to problems in theoretical mechanics and physics. The works of K. o. Friedrichs, which were in keeping with my own perception of the subject, had an especially strong influence on me. I was guided by the desire to prove, as simply as possible, that, like systems of n linear algebraic equations in n unknowns, the solvability of basic boundary value (and initial-boundary value) problems for partial differential equations is a consequence of the uniqueness theorems in a "sufficiently large" function space. This desire was successfully realized thanks to the introduction of various classes of general solutions and to an elaboration of the methods of proof for the corresponding uniqueness theorems. This was accomplished on the basis of comparatively simple integral inequalities for arbitrary functions and of a priori estimates of the solutions of the problems without enlisting any special representations of those solutions.
Book Synopsis Partial Differential Equations and Boundary-Value Problems with Applications by : Mark A. Pinsky
Download or read book Partial Differential Equations and Boundary-Value Problems with Applications written by Mark A. Pinsky and published by American Mathematical Soc.. This book was released on 2011 with total page 545 pages. Available in PDF, EPUB and Kindle. Book excerpt: Building on the basic techniques of separation of variables and Fourier series, the book presents the solution of boundary-value problems for basic partial differential equations: the heat equation, wave equation, and Laplace equation, considered in various standard coordinate systems--rectangular, cylindrical, and spherical. Each of the equations is derived in the three-dimensional context; the solutions are organized according to the geometry of the coordinate system, which makes the mathematics especially transparent. Bessel and Legendre functions are studied and used whenever appropriate throughout the text. The notions of steady-state solution of closely related stationary solutions are developed for the heat equation; applications to the study of heat flow in the earth are presented. The problem of the vibrating string is studied in detail both in the Fourier transform setting and from the viewpoint of the explicit representation (d'Alembert formula). Additional chapters include the numerical analysis of solutions and the method of Green's functions for solutions of partial differential equations. The exposition also includes asymptotic methods (Laplace transform and stationary phase). With more than 200 working examples and 700 exercises (more than 450 with answers), the book is suitable for an undergraduate course in partial differential equations.
Book Synopsis Hilbert Space Methods in Partial Differential Equations by : Ralph E. Showalter
Download or read book Hilbert Space Methods in Partial Differential Equations written by Ralph E. Showalter and published by Courier Corporation. This book was released on 2011-09-12 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: This graduate-level text opens with an elementary presentation of Hilbert space theory sufficient for understanding the rest of the book. Additional topics include boundary value problems, evolution equations, optimization, and approximation.1979 edition.
Book Synopsis Boundary Value Problems of Mathematical Physics. VI by : Olʹga A. Ladyženskaja
Download or read book Boundary Value Problems of Mathematical Physics. VI written by Olʹga A. Ladyženskaja and published by American Mathematical Soc.. This book was released on 1972 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Time-Dependent Problems and Difference Methods by : Bertil Gustafsson
Download or read book Time-Dependent Problems and Difference Methods written by Bertil Gustafsson and published by John Wiley & Sons. This book was released on 2013-07-18 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for the First Edition ". . . fills a considerable gap in the numerical analysis literature by providing a self-contained treatment . . . this is an important work written in a clear style . . . warmly recommended to any graduate student or researcher in the field of the numerical solution of partial differential equations." —SIAM Review Time-Dependent Problems and Difference Methods, Second Edition continues to provide guidance for the analysis of difference methods for computing approximate solutions to partial differential equations for time-dependent problems. The book treats differential equations and difference methods with a parallel development, thus achieving a more useful analysis of numerical methods. The Second Edition presents hyperbolic equations in great detail as well as new coverage on second-order systems of wave equations including acoustic waves, elastic waves, and Einstein equations. Compared to first-order hyperbolic systems, initial-boundary value problems for such systems contain new properties that must be taken into account when analyzing stability. Featuring the latest material in partial differential equations with new theorems, examples, and illustrations,Time-Dependent Problems and Difference Methods, Second Edition also includes: High order methods on staggered grids Extended treatment of Summation By Parts operators and their application to second-order derivatives Simplified presentation of certain parts and proofs Time-Dependent Problems and Difference Methods, Second Edition is an ideal reference for physical scientists, engineers, numerical analysts, and mathematical modelers who use numerical experiments to test designs and to predict and investigate physical phenomena. The book is also excellent for graduate-level courses in applied mathematics and scientific computations.
Book Synopsis Lectures on Elliptic and Parabolic Equations in Sobolev Spaces by : Nikolaĭ Vladimirovich Krylov
Download or read book Lectures on Elliptic and Parabolic Equations in Sobolev Spaces written by Nikolaĭ Vladimirovich Krylov and published by American Mathematical Soc.. This book was released on 2008 with total page 377 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book concentrates on the basic facts and ideas of the modern theory of linear elliptic and parabolic equations in Sobolev spaces. The main areas covered in this book are the first boundary-value problem for elliptic equations and the Cauchy problem for parabolic equations. In addition, other boundary-value problems such as the Neumann or oblique derivative problems are briefly covered. As is natural for a textbook, the main emphasis is on organizing well-known ideas in a self-contained exposition. Among the topics included that are not usually covered in a textbook are a relatively recent development concerning equations with $\textsf{VMO}$ coefficients and the study of parabolic equations with coefficients measurable only with respect to the time variable. There are numerous exercises which help the reader better understand the material. After going through the book, the reader will have a good understanding of results available in the modern theory of partial differential equations and the technique used to obtain them. Prerequesites are basics of measure theory, the theory of $L p$ spaces, and the Fourier transform.
Book Synopsis Integral Equations And Boundary Value Problems - Proceedings Of The International Conference by : Guo Chun Wen
Download or read book Integral Equations And Boundary Value Problems - Proceedings Of The International Conference written by Guo Chun Wen and published by #N/A. This book was released on 1991-03-15 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: The proceedings covers the following topics: Boundary value problems of partial differential equations including free boundary problems; Theory and methods of integral equations including singular integral equations; Applications of integral equations and boundary value problems to mechanics and physics; and numerical methods for integral equations and boundary value problems.