Stochastic Approximation

Download Stochastic Approximation PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 938627938X
Total Pages : 177 pages
Book Rating : 4.3/5 (862 download)

DOWNLOAD NOW!


Book Synopsis Stochastic Approximation by : Vivek S. Borkar

Download or read book Stochastic Approximation written by Vivek S. Borkar and published by Springer. This book was released on 2009-01-01 with total page 177 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Stochastic Approximation and Recursive Algorithms and Applications

Download Stochastic Approximation and Recursive Algorithms and Applications PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 038721769X
Total Pages : 485 pages
Book Rating : 4.3/5 (872 download)

DOWNLOAD NOW!


Book Synopsis Stochastic Approximation and Recursive Algorithms and Applications by : Harold Kushner

Download or read book Stochastic Approximation and Recursive Algorithms and Applications written by Harold Kushner and published by Springer Science & Business Media. This book was released on 2006-05-04 with total page 485 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a thorough development of the modern theory of stochastic approximation or recursive stochastic algorithms for both constrained and unconstrained problems. This second edition is a thorough revision, although the main features and structure remain unchanged. It contains many additional applications and results as well as more detailed discussion.

Stochastic Approximation Methods for Constrained and Unconstrained Systems

Download Stochastic Approximation Methods for Constrained and Unconstrained Systems PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1468493523
Total Pages : 273 pages
Book Rating : 4.4/5 (684 download)

DOWNLOAD NOW!


Book Synopsis Stochastic Approximation Methods for Constrained and Unconstrained Systems by : H.J. Kushner

Download or read book Stochastic Approximation Methods for Constrained and Unconstrained Systems written by H.J. Kushner and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book deals with a powerful and convenient approach to a great variety of types of problems of the recursive monte-carlo or stochastic approximation type. Such recu- sive algorithms occur frequently in stochastic and adaptive control and optimization theory and in statistical esti- tion theory. Typically, a sequence {X } of estimates of a n parameter is obtained by means of some recursive statistical th st procedure. The n estimate is some function of the n_l estimate and of some new observational data, and the aim is to study the convergence, rate of convergence, and the pa- metric dependence and other qualitative properties of the - gorithms. In this sense, the theory is a statistical version of recursive numerical analysis. The approach taken involves the use of relatively simple compactness methods. Most standard results for Kiefer-Wolfowitz and Robbins-Monro like methods are extended considerably. Constrained and unconstrained problems are treated, as is the rate of convergence problem. While the basic method is rather simple, it can be elaborated to allow a broad and deep coverage of stochastic approximation like problems. The approach, relating algorithm behavior to qualitative properties of deterministic or stochastic differ ential equations, has advantages in algorithm conceptualiza tion and design. It is often possible to obtain an intuitive understanding of algorithm behavior or qualitative dependence upon parameters, etc., without getting involved in a great deal of deta~l.

Stochastic Approximation and Optimization of Random Systems

Download Stochastic Approximation and Optimization of Random Systems PDF Online Free

Author :
Publisher : Birkhauser
ISBN 13 : 9780817627331
Total Pages : 128 pages
Book Rating : 4.6/5 (273 download)

DOWNLOAD NOW!


Book Synopsis Stochastic Approximation and Optimization of Random Systems by : Lennart Ljung

Download or read book Stochastic Approximation and Optimization of Random Systems written by Lennart Ljung and published by Birkhauser. This book was released on 1992 with total page 128 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Stochastic Approximation

Download Stochastic Approximation PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521604857
Total Pages : 220 pages
Book Rating : 4.6/5 (48 download)

DOWNLOAD NOW!


Book Synopsis Stochastic Approximation by : M. T. Wasan

Download or read book Stochastic Approximation written by M. T. Wasan and published by Cambridge University Press. This book was released on 2004-06-03 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: A rigorous mathematical treatment of the technique for studying the properties of an experimental situation.

Stochastic Approximation and Its Applications

Download Stochastic Approximation and Its Applications PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0306481669
Total Pages : 369 pages
Book Rating : 4.3/5 (64 download)

DOWNLOAD NOW!


Book Synopsis Stochastic Approximation and Its Applications by : Han-Fu Chen

Download or read book Stochastic Approximation and Its Applications written by Han-Fu Chen and published by Springer Science & Business Media. This book was released on 2005-12-30 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: Estimating unknown parameters based on observation data conta- ing information about the parameters is ubiquitous in diverse areas of both theory and application. For example, in system identification the unknown system coefficients are estimated on the basis of input-output data of the control system; in adaptive control systems the adaptive control gain should be defined based on observation data in such a way that the gain asymptotically tends to the optimal one; in blind ch- nel identification the channel coefficients are estimated using the output data obtained at the receiver; in signal processing the optimal weighting matrix is estimated on the basis of observations; in pattern classifi- tion the parameters specifying the partition hyperplane are searched by learning, and more examples may be added to this list. All these parameter estimation problems can be transformed to a root-seeking problem for an unknown function. To see this, let - note the observation at time i. e. , the information available about the unknown parameters at time It can be assumed that the parameter under estimation denoted by is a root of some unknown function This is not a restriction, because, for example, may serve as such a function.

Stochastic Approximation

Download Stochastic Approximation PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 34 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Stochastic Approximation by : Cyrus Derman

Download or read book Stochastic Approximation written by Cyrus Derman and published by . This book was released on 1956 with total page 34 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Stochastic Approximation and Recursive Estimation

Download Stochastic Approximation and Recursive Estimation PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 9780821809068
Total Pages : 252 pages
Book Rating : 4.8/5 (9 download)

DOWNLOAD NOW!


Book Synopsis Stochastic Approximation and Recursive Estimation by : M. B. Nevel'son

Download or read book Stochastic Approximation and Recursive Estimation written by M. B. Nevel'son and published by American Mathematical Soc.. This book was released on 1976-10-01 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to sequential methods of solving a class of problems to which belongs, for example, the problem of finding a maximum point of a function if each measured value of this function contains a random error. Some basic procedures of stochastic approximation are investigated from a single point of view, namely the theory of Markov processes and martingales. Examples are considered of applications of the theorems to some problems of estimation theory, educational theory and control theory, and also to some problems of information transmission in the presence of inverse feedback.

Stochastic Optimization Methods

Download Stochastic Optimization Methods PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3662462141
Total Pages : 389 pages
Book Rating : 4.6/5 (624 download)

DOWNLOAD NOW!


Book Synopsis Stochastic Optimization Methods by : Kurt Marti

Download or read book Stochastic Optimization Methods written by Kurt Marti and published by Springer. This book was released on 2015-02-21 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book examines optimization problems that in practice involve random model parameters. It details the computation of robust optimal solutions, i.e., optimal solutions that are insensitive with respect to random parameter variations, where appropriate deterministic substitute problems are needed. Based on the probability distribution of the random data and using decision theoretical concepts, optimization problems under stochastic uncertainty are converted into appropriate deterministic substitute problems. Due to the probabilities and expectations involved, the book also shows how to apply approximative solution techniques. Several deterministic and stochastic approximation methods are provided: Taylor expansion methods, regression and response surface methods (RSM), probability inequalities, multiple linearization of survival/failure domains, discretization methods, convex approximation/deterministic descent directions/efficient points, stochastic approximation and gradient procedures and differentiation formulas for probabilities and expectations. In the third edition, this book further develops stochastic optimization methods. In particular, it now shows how to apply stochastic optimization methods to the approximate solution of important concrete problems arising in engineering, economics and operations research.

Introduction to Stochastic Search and Optimization

Download Introduction to Stochastic Search and Optimization PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0471441902
Total Pages : 620 pages
Book Rating : 4.4/5 (714 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Stochastic Search and Optimization by : James C. Spall

Download or read book Introduction to Stochastic Search and Optimization written by James C. Spall and published by John Wiley & Sons. This book was released on 2005-03-11 with total page 620 pages. Available in PDF, EPUB and Kindle. Book excerpt: * Unique in its survey of the range of topics. * Contains a strong, interdisciplinary format that will appeal to both students and researchers. * Features exercises and web links to software and data sets.

Adaptive Algorithms and Stochastic Approximations

Download Adaptive Algorithms and Stochastic Approximations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642758940
Total Pages : 373 pages
Book Rating : 4.6/5 (427 download)

DOWNLOAD NOW!


Book Synopsis Adaptive Algorithms and Stochastic Approximations by : Albert Benveniste

Download or read book Adaptive Algorithms and Stochastic Approximations written by Albert Benveniste and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: Adaptive systems are widely encountered in many applications ranging through adaptive filtering and more generally adaptive signal processing, systems identification and adaptive control, to pattern recognition and machine intelligence: adaptation is now recognised as keystone of "intelligence" within computerised systems. These diverse areas echo the classes of models which conveniently describe each corresponding system. Thus although there can hardly be a "general theory of adaptive systems" encompassing both the modelling task and the design of the adaptation procedure, nevertheless, these diverse issues have a major common component: namely the use of adaptive algorithms, also known as stochastic approximations in the mathematical statistics literature, that is to say the adaptation procedure (once all modelling problems have been resolved). The juxtaposition of these two expressions in the title reflects the ambition of the authors to produce a reference work, both for engineers who use these adaptive algorithms and for probabilists or statisticians who would like to study stochastic approximations in terms of problems arising from real applications. Hence the book is organised in two parts, the first one user-oriented, and the second providing the mathematical foundations to support the practice described in the first part. The book covers the topcis of convergence, convergence rate, permanent adaptation and tracking, change detection, and is illustrated by various realistic applications originating from these areas of applications.

First-order and Stochastic Optimization Methods for Machine Learning

Download First-order and Stochastic Optimization Methods for Machine Learning PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030395685
Total Pages : 591 pages
Book Rating : 4.0/5 (33 download)

DOWNLOAD NOW!


Book Synopsis First-order and Stochastic Optimization Methods for Machine Learning by : Guanghui Lan

Download or read book First-order and Stochastic Optimization Methods for Machine Learning written by Guanghui Lan and published by Springer Nature. This book was released on 2020-05-15 with total page 591 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers not only foundational materials but also the most recent progresses made during the past few years on the area of machine learning algorithms. In spite of the intensive research and development in this area, there does not exist a systematic treatment to introduce the fundamental concepts and recent progresses on machine learning algorithms, especially on those based on stochastic optimization methods, randomized algorithms, nonconvex optimization, distributed and online learning, and projection free methods. This book will benefit the broad audience in the area of machine learning, artificial intelligence and mathematical programming community by presenting these recent developments in a tutorial style, starting from the basic building blocks to the most carefully designed and complicated algorithms for machine learning.

Lectures on Stochastic Programming

Download Lectures on Stochastic Programming PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 0898718759
Total Pages : 447 pages
Book Rating : 4.8/5 (987 download)

DOWNLOAD NOW!


Book Synopsis Lectures on Stochastic Programming by : Alexander Shapiro

Download or read book Lectures on Stochastic Programming written by Alexander Shapiro and published by SIAM. This book was released on 2009-01-01 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimization problems involving stochastic models occur in almost all areas of science and engineering, such as telecommunications, medicine, and finance. Their existence compels a need for rigorous ways of formulating, analyzing, and solving such problems. This book focuses on optimization problems involving uncertain parameters and covers the theoretical foundations and recent advances in areas where stochastic models are available. Readers will find coverage of the basic concepts of modeling these problems, including recourse actions and the nonanticipativity principle. The book also includes the theory of two-stage and multistage stochastic programming problems; the current state of the theory on chance (probabilistic) constraints, including the structure of the problems, optimality theory, and duality; and statistical inference in and risk-averse approaches to stochastic programming.

On-Line Learning in Neural Networks

Download On-Line Learning in Neural Networks PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521117913
Total Pages : 412 pages
Book Rating : 4.1/5 (179 download)

DOWNLOAD NOW!


Book Synopsis On-Line Learning in Neural Networks by : David Saad

Download or read book On-Line Learning in Neural Networks written by David Saad and published by Cambridge University Press. This book was released on 2009-07-30 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: On-line learning is one of the most commonly used techniques for training neural networks. Though it has been used successfully in many real-world applications, most training methods are based on heuristic observations. The lack of theoretical support damages the credibility as well as the efficiency of neural networks training, making it hard to choose reliable or optimal methods. This book presents a coherent picture of the state of the art in the theoretical analysis of on-line learning. An introduction relates the subject to other developments in neural networks and explains the overall picture. Surveys by leading experts in the field combine new and established material and enable nonexperts to learn more about the techniques and methods used. This book, the first in the area, provides a comprehensive view of the subject and will be welcomed by mathematicians, scientists and engineers, both in industry and academia.

Random Iterative Models

Download Random Iterative Models PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3662128802
Total Pages : 394 pages
Book Rating : 4.6/5 (621 download)

DOWNLOAD NOW!


Book Synopsis Random Iterative Models by : Marie Duflo

Download or read book Random Iterative Models written by Marie Duflo and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: An up-to-date, self-contained review of a wide range of recursive methods for stabilization, identification and control of complex stochastic models (guiding a rocket or a plane, organizing multi-access broadcast channels, self-learning of neural networks ...). Suitable for mathematicians (researchers and also students) and engineers.

Stochastic Recursive Algorithms for Optimization

Download Stochastic Recursive Algorithms for Optimization PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 1447142853
Total Pages : 310 pages
Book Rating : 4.4/5 (471 download)

DOWNLOAD NOW!


Book Synopsis Stochastic Recursive Algorithms for Optimization by : S. Bhatnagar

Download or read book Stochastic Recursive Algorithms for Optimization written by S. Bhatnagar and published by Springer. This book was released on 2012-08-11 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic Recursive Algorithms for Optimization presents algorithms for constrained and unconstrained optimization and for reinforcement learning. Efficient perturbation approaches form a thread unifying all the algorithms considered. Simultaneous perturbation stochastic approximation and smooth fractional estimators for gradient- and Hessian-based methods are presented. These algorithms: • are easily implemented; • do not require an explicit system model; and • work with real or simulated data. Chapters on their application in service systems, vehicular traffic control and communications networks illustrate this point. The book is self-contained with necessary mathematical results placed in an appendix. The text provides easy-to-use, off-the-shelf algorithms that are given detailed mathematical treatment so the material presented will be of significant interest to practitioners, academic researchers and graduate students alike. The breadth of applications makes the book appropriate for reader from similarly diverse backgrounds: workers in relevant areas of computer science, control engineering, management science, applied mathematics, industrial engineering and operations research will find the content of value.

On Stochastic Approximation

Download On Stochastic Approximation PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 84 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis On Stochastic Approximation by : Aryeh Dvoretsky

Download or read book On Stochastic Approximation written by Aryeh Dvoretsky and published by . This book was released on 1955 with total page 84 pages. Available in PDF, EPUB and Kindle. Book excerpt: