Maximum Principles and Geometric Applications

Download Maximum Principles and Geometric Applications PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319243373
Total Pages : 594 pages
Book Rating : 4.3/5 (192 download)

DOWNLOAD NOW!


Book Synopsis Maximum Principles and Geometric Applications by : Luis J. Alías

Download or read book Maximum Principles and Geometric Applications written by Luis J. Alías and published by Springer. This book was released on 2016-02-13 with total page 594 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph presents an introduction to some geometric and analytic aspects of the maximum principle. In doing so, it analyses with great detail the mathematical tools and geometric foundations needed to develop the various new forms that are presented in the first chapters of the book. In particular, a generalization of the Omori-Yau maximum principle to a wide class of differential operators is given, as well as a corresponding weak maximum principle and its equivalent open form and parabolicity as a special stronger formulation of the latter. In the second part, the attention focuses on a wide range of applications, mainly to geometric problems, but also on some analytic (especially PDEs) questions including: the geometry of submanifolds, hypersurfaces in Riemannian and Lorentzian targets, Ricci solitons, Liouville theorems, uniqueness of solutions of Lichnerowicz-type PDEs and so on. Maximum Principles and Geometric Applications is written in an easy style making it accessible to beginners. The reader is guided with a detailed presentation of some topics of Riemannian geometry that are usually not covered in textbooks. Furthermore, many of the results and even proofs of known results are new and lead to the frontiers of a contemporary and active field of research.

Geometric Analysis of Quasilinear Inequalities on Complete Manifolds

Download Geometric Analysis of Quasilinear Inequalities on Complete Manifolds PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030627047
Total Pages : 291 pages
Book Rating : 4.0/5 (36 download)

DOWNLOAD NOW!


Book Synopsis Geometric Analysis of Quasilinear Inequalities on Complete Manifolds by : Bruno Bianchini

Download or read book Geometric Analysis of Quasilinear Inequalities on Complete Manifolds written by Bruno Bianchini and published by Springer Nature. This book was released on 2021-01-18 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book demonstrates the influence of geometry on the qualitative behaviour of solutions of quasilinear PDEs on Riemannian manifolds. Motivated by examples arising, among others, from the theory of submanifolds, the authors study classes of coercive elliptic differential inequalities on domains of a manifold M with very general nonlinearities depending on the variable x, on the solution u and on its gradient. The book highlights the mean curvature operator and its variants, and investigates the validity of strong maximum principles, compact support principles and Liouville type theorems. In particular, it identifies sharp thresholds involving curvatures or volume growth of geodesic balls in M to guarantee the above properties under appropriate Keller-Osserman type conditions, which are investigated in detail throughout the book, and discusses the geometric reasons behind the existence of such thresholds. Further, the book also provides a unified review of recent results in the literature, and creates a bridge with geometry by studying the validity of weak and strong maximum principles at infinity, in the spirit of Omori-Yau’s Hessian and Laplacian principles and subsequent improvements.

Mathematical Reviews

Download Mathematical Reviews PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 958 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Mathematical Reviews by :

Download or read book Mathematical Reviews written by and published by . This book was released on 2006 with total page 958 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Maximum Principles on Riemannian Manifolds and Applications

Download Maximum Principles on Riemannian Manifolds and Applications PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821836390
Total Pages : 118 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Maximum Principles on Riemannian Manifolds and Applications by : Stefano Pigola

Download or read book Maximum Principles on Riemannian Manifolds and Applications written by Stefano Pigola and published by American Mathematical Soc.. This book was released on 2005 with total page 118 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aims to introduce the reader to various forms of the maximum principle, starting from its classical formulation up to generalizations of the Omori-Yau maximum principle at infinity obtained by the authors.

Vanishing and Finiteness Results in Geometric Analysis

Download Vanishing and Finiteness Results in Geometric Analysis PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3764386428
Total Pages : 294 pages
Book Rating : 4.7/5 (643 download)

DOWNLOAD NOW!


Book Synopsis Vanishing and Finiteness Results in Geometric Analysis by : Stefano Pigola

Download or read book Vanishing and Finiteness Results in Geometric Analysis written by Stefano Pigola and published by Springer Science & Business Media. This book was released on 2008-05-28 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes very recent results involving an extensive use of analytical tools in the study of geometrical and topological properties of complete Riemannian manifolds. It analyzes in detail an extension of the Bochner technique to the non compact setting, yielding conditions which ensure that solutions of geometrically significant differential equations either are trivial (vanishing results) or give rise to finite dimensional vector spaces (finiteness results). The book develops a range of methods, from spectral theory and qualitative properties of solutions of PDEs, to comparison theorems in Riemannian geometry and potential theory.

Reviews in Global Analysis, 1980-86 as Printed in Mathematical Reviews

Download Reviews in Global Analysis, 1980-86 as Printed in Mathematical Reviews PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 848 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Reviews in Global Analysis, 1980-86 as Printed in Mathematical Reviews by :

Download or read book Reviews in Global Analysis, 1980-86 as Printed in Mathematical Reviews written by and published by . This book was released on 1988 with total page 848 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Spectral Geometry

Download Spectral Geometry PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540409580
Total Pages : 284 pages
Book Rating : 4.5/5 (44 download)

DOWNLOAD NOW!


Book Synopsis Spectral Geometry by : Pierre H. Berard

Download or read book Spectral Geometry written by Pierre H. Berard and published by Springer. This book was released on 2006-11-14 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Contemporary Research in Elliptic PDEs and Related Topics

Download Contemporary Research in Elliptic PDEs and Related Topics PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 303018921X
Total Pages : 502 pages
Book Rating : 4.0/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Contemporary Research in Elliptic PDEs and Related Topics by : Serena Dipierro

Download or read book Contemporary Research in Elliptic PDEs and Related Topics written by Serena Dipierro and published by Springer. This book was released on 2019-07-12 with total page 502 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume collects contributions from the speakers at an INdAM Intensive period held at the University of Bari in 2017. The contributions cover several aspects of partial differential equations whose development in recent years has experienced major breakthroughs in terms of both theory and applications. The topics covered include nonlocal equations, elliptic equations and systems, fully nonlinear equations, nonlinear parabolic equations, overdetermined boundary value problems, maximum principles, geometric analysis, control theory, mean field games, and bio-mathematics. The authors are trailblazers in these topics and present their work in a way that is exhaustive and clearly accessible to PhD students and early career researcher. As such, the book offers an excellent introduction to a variety of fundamental topics of contemporary investigation and inspires novel and high-quality research.

Geometry in History

Download Geometry in History PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030136094
Total Pages : 759 pages
Book Rating : 4.0/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Geometry in History by : S. G. Dani

Download or read book Geometry in History written by S. G. Dani and published by Springer Nature. This book was released on 2019-10-18 with total page 759 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a collection of surveys on important mathematical ideas, their origin, their evolution and their impact in current research. The authors are mathematicians who are leading experts in their fields. The book is addressed to all mathematicians, from undergraduate students to senior researchers, regardless of the specialty.

Minimal Submanifolds and Related Topics

Download Minimal Submanifolds and Related Topics PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9812386874
Total Pages : 271 pages
Book Rating : 4.8/5 (123 download)

DOWNLOAD NOW!


Book Synopsis Minimal Submanifolds and Related Topics by : Y. L. Xin

Download or read book Minimal Submanifolds and Related Topics written by Y. L. Xin and published by World Scientific. This book was released on 2003 with total page 271 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Bernstein problem and the Plateau problem are central topics in the theory of minimal submanifolds. This important book presents the Douglas-Rado solution to the Plateau problem, but the main emphasis is on the Bernstein problem and its new developments in various directions: the value distribution of the Gauss image of a minimal surface in Euclidean 3-space, Simons' work for minimal graphic hypersurfaces, and author's own contributions to Bernstein type theorems for higher codimensions. The author also introduces some related topics, such as submanifolds with parallel mean curvature, Weierstrass type representation for surfaces of mean curvature 1 in hyperbolic 3-space, and special Lagrangian submanifolds.

Global Lorentzian Geometry

Download Global Lorentzian Geometry PDF Online Free

Author :
Publisher : Routledge
ISBN 13 : 1351444719
Total Pages : 656 pages
Book Rating : 4.3/5 (514 download)

DOWNLOAD NOW!


Book Synopsis Global Lorentzian Geometry by : John K. Beem

Download or read book Global Lorentzian Geometry written by John K. Beem and published by Routledge. This book was released on 2017-09-29 with total page 656 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bridging the gap between modern differential geometry and the mathematical physics of general relativity, this text, in its second edition, includes new and expanded material on topics such as the instability of both geodesic completeness and geodesic incompleteness for general space-times, geodesic connectibility, the generic condition, the sectional curvature function in a neighbourhood of degenerate two-plane, and proof of the Lorentzian Splitting Theorem.;Five or more copies may be ordered by college or university stores at a special student price, available on request.

Minimal Submanifolds And Related Topics (Second Edition)

Download Minimal Submanifolds And Related Topics (Second Edition) PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9813236078
Total Pages : 397 pages
Book Rating : 4.8/5 (132 download)

DOWNLOAD NOW!


Book Synopsis Minimal Submanifolds And Related Topics (Second Edition) by : Yuanlong Xin

Download or read book Minimal Submanifolds And Related Topics (Second Edition) written by Yuanlong Xin and published by World Scientific. This book was released on 2018-08-03 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the theory of minimal submanifolds, Bernstein's problem and Plateau's problem are central topics. This important book presents the Douglas-Rado solution to Plateau's problem, but the main emphasis is on Bernstein's problem and its new developments in various directions: the value distribution of the Gauss image of a minimal surface in Euclidean 3-space, Simons' work for minimal graphic hypersurfaces, and the author's own contributions to Bernstein type theorems for higher codimension. The author also introduces some related topics, such as submanifolds with parallel mean curvature, Weierstrass type representation for surfaces of mean curvature 1 in hyperbolic 3-space, and special Lagrangian submanifolds.This new edition contains the author's recent work on the Lawson-Osserman's problem for higher codimension, and on Chern's problem for minimal hypersurfaces in the sphere. Both Chern's problem and Lawson-Osserman's problem are important problems in minimal surface theory which are still unsolved. In addition, some new techniques were developed to address those problems in detail, which are of interest in the field of geometric analysis.

Poisson Structures and Their Normal Forms

Download Poisson Structures and Their Normal Forms PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3764373350
Total Pages : 332 pages
Book Rating : 4.7/5 (643 download)

DOWNLOAD NOW!


Book Synopsis Poisson Structures and Their Normal Forms by : Jean-Paul Dufour

Download or read book Poisson Structures and Their Normal Forms written by Jean-Paul Dufour and published by Springer Science & Business Media. This book was released on 2006-01-17 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book is twofold. On the one hand, it gives a quick, self-contained introduction to Poisson geometry and related subjects. On the other hand, it presents a comprehensive treatment of the normal form problem in Poisson geometry. Even when it comes to classical results, the book gives new insights. It contains results obtained over the past 10 years which are not available in other books.

The Mathematics of Voting and Elections: A Hands-On Approach

Download The Mathematics of Voting and Elections: A Hands-On Approach PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470442876
Total Pages : 255 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis The Mathematics of Voting and Elections: A Hands-On Approach by : Jonathan K. Hodge

Download or read book The Mathematics of Voting and Elections: A Hands-On Approach written by Jonathan K. Hodge and published by American Mathematical Soc.. This book was released on 2018-10-01 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Mathematics of Voting and Elections: A Hands-On Approach, Second Edition, is an inquiry-based approach to the mathematics of politics and social choice. The aim of the book is to give readers who might not normally choose to engage with mathematics recreationally the chance to discover some interesting mathematical ideas from within a familiar context, and to see the applicability of mathematics to real-world situations. Through this process, readers should improve their critical thinking and problem solving skills, as well as broaden their views of what mathematics really is and how it can be used in unexpected ways. The book was written specifically for non-mathematical audiences and requires virtually no mathematical prerequisites beyond basic arithmetic. At the same time, the questions included are designed to challenge both mathematical and non-mathematical audiences alike. More than giving the right answers, this book asks the right questions. The book is fun to read, with examples that are not just thought-provoking, but also entertaining. It is written in a style that is casual without being condescending. But the discovery-based approach of the book also forces readers to play an active role in their learning, which should lead to a sense of ownership of the main ideas in the book. And while the book provides answers to some of the important questions in the field of mathematical voting theory, it also leads readers to discover new questions and ways to approach them. In addition to making small improvements in all the chapters, this second edition contains several new chapters. Of particular interest might be Chapter 12 which covers a host of topics related to gerrymandering.

Microbial Action on Hydrocarbons

Download Microbial Action on Hydrocarbons PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9811318409
Total Pages : 664 pages
Book Rating : 4.8/5 (113 download)

DOWNLOAD NOW!


Book Synopsis Microbial Action on Hydrocarbons by : Vivek Kumar

Download or read book Microbial Action on Hydrocarbons written by Vivek Kumar and published by Springer. This book was released on 2019-02-08 with total page 664 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book discusses ways to overcome the side effects of using hydrocarbon-based products as energy sources. Hydrocarbons produce raw crude oil waste of around 600,000 metric tons per annum, with a range of uncertainty of 200,000 metric tons per year. The various chapters in this book focus on approaches to reduce these wastes through the application of potential microbes, in a process called bioremediation. The book is a one-stop reference resource on the methods, mechanisms and application of the bio-composites, in the laboratory and field. Focusing on resolving a very pressing environmental issue, it not only provides details of existing challenges, but also offers deeper insights into the possibility of solving problems using hydrocarbon bioremediation.

Physics on Manifolds

Download Physics on Manifolds PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9401119384
Total Pages : 365 pages
Book Rating : 4.4/5 (11 download)

DOWNLOAD NOW!


Book Synopsis Physics on Manifolds by : M. Flato

Download or read book Physics on Manifolds written by M. Flato and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 365 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the Colloquium "Analysis, Manifolds and Physics" organized in honour of Yvonne Choquet-Bruhat by her friends, collaborators and former students, on June 3, 4 and 5, 1992 in Paris. Its title accurately reflects the domains to which Yvonne Choquet-Bruhat has made essential contributions. Since the rise of General Relativity, the geometry of Manifolds has become a non-trivial part of space-time physics. At the same time, Functional Analysis has been of enormous importance in Quantum Mechanics, and Quantum Field Theory. Its role becomes decisive when one considers the global behaviour of solutions of differential systems on manifolds. In this sense, General Relativity is an exceptional theory in which the solutions of a highly non-linear system of partial differential equations define by themselves the very manifold on which they are supposed to exist. This is why a solution of Einstein's equations cannot be physically interpreted before its global behaviour is known, taking into account the entire hypothetical underlying manifold. In her youth, Yvonne Choquet-Bruhat contributed in a spectacular way to this domain stretching between physics and mathematics, when she gave the proof of the existence of solutions to Einstein's equations on differential manifolds of a quite general type. The methods she created have been worked out by the French school of mathematics, principally by Jean Leray. Her first proof of the local existence and uniqueness of solutions of Einstein's equations inspired Jean Leray's theory of general hyperbolic systems.

Semi-Riemannian Geometry With Applications to Relativity

Download Semi-Riemannian Geometry With Applications to Relativity PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0080570577
Total Pages : 483 pages
Book Rating : 4.0/5 (85 download)

DOWNLOAD NOW!


Book Synopsis Semi-Riemannian Geometry With Applications to Relativity by : Barrett O'Neill

Download or read book Semi-Riemannian Geometry With Applications to Relativity written by Barrett O'Neill and published by Academic Press. This book was released on 1983-07-29 with total page 483 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an exposition of semi-Riemannian geometry (also called pseudo-Riemannian geometry)--the study of a smooth manifold furnished with a metric tensor of arbitrary signature. The principal special cases are Riemannian geometry, where the metric is positive definite, and Lorentz geometry. For many years these two geometries have developed almost independently: Riemannian geometry reformulated in coordinate-free fashion and directed toward global problems, Lorentz geometry in classical tensor notation devoted to general relativity. More recently, this divergence has been reversed as physicists, turning increasingly toward invariant methods, have produced results of compelling mathematical interest.