Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Numerical Solution Of The Schrodinger Wave Equation In A Potential Well
Download Numerical Solution Of The Schrodinger Wave Equation In A Potential Well full books in PDF, epub, and Kindle. Read online Numerical Solution Of The Schrodinger Wave Equation In A Potential Well ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Solving the Schrodinger Equation by : Paul L. A. Popelier
Download or read book Solving the Schrodinger Equation written by Paul L. A. Popelier and published by World Scientific. This book was released on 2011 with total page 375 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Schrodinger equation is the master equation of quantum chemistry. The founders of quantum mechanics realised how this equation underpins essentially the whole of chemistry. However, they recognised that its exact application was much too complicated to be solvable at the time. More than two generations of researchers were left to work out how to achieve this ambitious goal for molecular systems of ever-increasing size. This book focuses on non-mainstream methods to solve the molecular electronic Schrodinger equation. Each method is based on a set of core ideas and this volume aims to explain these ideas clearly so that they become more accessible. By bringing together these non-standard methods, the book intends to inspire graduate students, postdoctoral researchers and academics to think of novel approaches. Is there a method out there that we have not thought of yet? Can we design a new method that combines the best of all worlds?
Author :Theodore E. Simos Publisher :World Scientific Publishing Company ISBN 13 :9781860946974 Total Pages :500 pages Book Rating :4.9/5 (469 download)
Book Synopsis Numerical Solution of the Schrödinger Equation by : Theodore E. Simos
Download or read book Numerical Solution of the Schrödinger Equation written by Theodore E. Simos and published by World Scientific Publishing Company. This book was released on 2009 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: This title is devoted to the numerical solution of general problems with periodic and oscillating solutions.
Book Synopsis Quantum Wells, Wires and Dots by : Paul Harrison
Download or read book Quantum Wells, Wires and Dots written by Paul Harrison and published by John Wiley & Sons. This book was released on 2005-10-31 with total page 511 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum Wells, Wires and Dots Second Edition: Theoretical andComputational Physics of Semiconductor Nanostructures providesall the essential information, both theoretical and computational,for complete beginners to develop an understanding of how theelectronic, optical and transport properties of quantum wells,wires and dots are calculated. Readers are lead through a series ofsimple theoretical and computational examples giving solidfoundations from which they will gain the confidence to initiatetheoretical investigations or explanations of their own. Emphasis on combining the analysis and interpretation ofexperimental data with the development of theoretical ideas Complementary to the more standard texts Aimed at the physics community at large, rather than just thelow-dimensional semiconductor expert The text present solutions for a large number of realsituations Presented in a lucid style with easy to follow steps related toaccompanying illustrative examples
Book Synopsis A Textbook of Physical Chemistry – Volume 1 by : Mandeep Dalal
Download or read book A Textbook of Physical Chemistry – Volume 1 written by Mandeep Dalal and published by Dalal Institute. This book was released on 2018-01-01 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: An advanced-level textbook of physical chemistry for the graduate (B.Sc) and postgraduate (M.Sc) students of Indian and foreign universities. This book is a part of four volume series, entitled "A Textbook of Physical Chemistry – Volume I, II, III, IV". CONTENTS: Chapter 1. Quantum Mechanics – I: Postulates of quantum mechanics; Derivation of Schrodinger wave equation; Max-Born interpretation of wave functions; The Heisenberg’s uncertainty principle; Quantum mechanical operators and their commutation relations; Hermitian operators (elementary ideas, quantum mechanical operator for linear momentum, angular momentum and energy as Hermition operator); The average value of the square of Hermitian operators; Commuting operators and uncertainty principle(x & p; E & t); Schrodinger wave equation for a particle in one dimensional box; Evaluation of average position, average momentum and determination of uncertainty in position and momentum and hence Heisenberg’s uncertainty principle; Pictorial representation of the wave equation of a particle in one dimensional box and its influence on the kinetic energy of the particle in each successive quantum level; Lowest energy of the particle. Chapter 2. Thermodynamics – I: Brief resume of first and second Law of thermodynamics; Entropy changes in reversible and irreversible processes; Variation of entropy with temperature, pressure and volume; Entropy concept as a measure of unavailable energy and criteria for the spontaneity of reaction; Free energy, enthalpy functions and their significance, criteria for spontaneity of a process; Partial molar quantities (free energy, volume, heat concept); Gibb’s-Duhem equation. Chapter 3. Chemical Dynamics – I: Effect of temperature on reaction rates; Rate law for opposing reactions of Ist order and IInd order; Rate law for consecutive & parallel reactions of Ist order reactions; Collision theory of reaction rates and its limitations; Steric factor; Activated complex theory; Ionic reactions: single and double sphere models; Influence of solvent and ionic strength; The comparison of collision and activated complex theory. Chapter 4. Electrochemistry – I: Ion-Ion Interactions: The Debye-Huckel theory of ion- ion interactions; Potential and excess charge density as a function of distance from the central ion; Debye Huckel reciprocal length; Ionic cloud and its contribution to the total potential; Debye - Huckel limiting law of activity coefficients and its limitations; Ion-size effect on potential; Ion-size parameter and the theoretical mean-activity coefficient in the case of ionic clouds with finite-sized ions; Debye - Huckel-Onsager treatment for aqueous solutions and its limitations; Debye-Huckel-Onsager theory for non-aqueous solutions; The solvent effect on the mobality at infinite dilution; Equivalent conductivity (Λ) vs. concentration c 1/2 as a function of the solvent; Effect of ion association upon conductivity (Debye- Huckel - Bjerrum equation). Chapter 5. Quantum Mechanics – II: Schrodinger wave equation for a particle in a three dimensional box; The concept of degeneracy among energy levels for a particle in three dimensional box; Schrodinger wave equation for a linear harmonic oscillator & its solution by polynomial method; Zero point energy of a particle possessing harmonic motion and its consequence; Schrodinger wave equation for three dimensional Rigid rotator; Energy of rigid rotator; Space quantization; Schrodinger wave equation for hydrogen atom, separation of variable in polar spherical coordinates and its solution; Principle, azimuthal and magnetic quantum numbers and the magnitude of their values; Probability distribution function; Radial distribution function; Shape of atomic orbitals (s,p & d). Chapter 6. Thermodynamics – II: Classius-Clayperon equation; Law of mass action and its thermodynamic derivation; Third law of thermodynamics (Nernest heat theorem, determination of absolute entropy, unattainability of absolute zero) and its limitation; Phase diagram for two completely miscible components systems; Eutectic systems, Calculation of eutectic point; Systems forming solid compounds Ax By with congruent and incongruent melting points; Phase diagram and thermodynamic treatment of solid solutions. Chapter 7. Chemical Dynamics – II: Chain reactions: hydrogen-bromine reaction, pyrolysis of acetaldehyde, decomposition of ethane; Photochemical reactions (hydrogen - bromine & hydrogen -chlorine reactions); General treatment of chain reactions (ortho-para hydrogen conversion and hydrogen - bromine reactions); Apparent activation energy of chain reactions, Chain length; Rice-Herzfeld mechanism of organic molecules decomposition(acetaldehyde); Branching chain reactions and explosions ( H2-O2 reaction); Kinetics of (one intermediate) enzymatic reaction : Michaelis-Menton treatment; Evaluation of Michaelis 's constant for enzyme-substrate binding by Lineweaver-Burk plot and Eadie-Hofstae methods; Competitive and non-competitive inhibition. Chapter 8. Electrochemistry – II: Ion Transport in Solutions: Ionic movement under the influence of an electric field; Mobility of ions; Ionic drift velocity and its relation with current density; Einstein relation between the absolute mobility and diffusion coefficient; The Stokes- Einstein relation; The Nernst -Einstein equation; Walden’s rule; The Rate-process approach to ionic migration; The Rate process equation for equivalent conductivity; Total driving force for ionic transport, Nernst - Planck Flux equation; Ionic drift and diffusion potential; the Onsager phenomenological equations; The basic equation for the diffusion; Planck-Henderson equation for the diffusion potential.
Book Synopsis The Schrödinger Equation by : F.A. Berezin
Download or read book The Schrödinger Equation written by F.A. Berezin and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 573 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume deals with those topics of mathematical physics, associated with the study of the Schrödinger equation, which are considered to be the most important. Chapter 1 presents the basic concepts of quantum mechanics. Chapter 2 provides an introduction to the spectral theory of the one-dimensional Schrödinger equation. Chapter 3 opens with a discussion of the spectral theory of the multi-dimensional Schrödinger equation, which is a far more complex case and requires careful consideration of aspects which are trivial in the one-dimensional case. Chapter 4 presents the scattering theory for the multi-dimensional non-relativistic Schrödinger equation, and the final chapter is devoted to quantization and Feynman path integrals. These five main chapters are followed by three supplements, which present material drawn on in the various chapters. The first two supplements deal with general questions concerning the spectral theory of operators in Hilbert space, and necessary information relating to Sobolev spaces and elliptic equations. Supplement 3, which essentially stands alone, introduces the concept of the supermanifold which leads to a more natural treatment of quantization. Although written primarily for mathematicians who wish to gain a better awareness of the physical aspects of quantum mechanics and related topics, it will also be useful for mathematical physicists who wish to become better acquainted with the mathematical formalism of quantum mechanics. Much of the material included here has been based on lectures given by the authors at Moscow State University, and this volume can also be recommended as a supplementary graduate level introduction to the spectral theory of differential operators with both discrete and continuous spectra. This English edition is a revised, expanded version of the original Soviet publication.
Book Synopsis Physical Chemistry for the Biosciences by : Raymond Chang
Download or read book Physical Chemistry for the Biosciences written by Raymond Chang and published by University Science Books. This book was released on 2005-02-11 with total page 706 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is ideal for use in a one-semester introductory course in physical chemistry for students of life sciences. The author's aim is to emphasize the understanding of physical concepts rather than focus on precise mathematical development or on actual experimental details. Subsequently, only basic skills of differential and integral calculus are required for understanding the equations. The end-of-chapter problems have both physiochemical and biological applications.
Book Synopsis Conceptual Foundations Of Quantum Mechanics by : Bernard D'espagnat
Download or read book Conceptual Foundations Of Quantum Mechanics written by Bernard D'espagnat and published by CRC Press. This book was released on 2018-03-05 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: Conceptual Foundations of Quantum Mechanics provides a detailed view of the conceptual foundations and problems of quantum physics, and a clear and comprehensive account of the fundamental physical implications of the quantum formalism. This book deals with nonseparability, hidden variable theories, measurement theories and several related problems. Mathematical arguments are presented with an emphasis on simple but adequately representative cases. The conclusion incorporates a description of a set of relationships and concepts that could compose a legitimate view of the world.
Book Synopsis Finite Difference Methods for Ordinary and Partial Differential Equations by : Randall J. LeVeque
Download or read book Finite Difference Methods for Ordinary and Partial Differential Equations written by Randall J. LeVeque and published by SIAM. This book was released on 2007-01-01 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.
Book Synopsis Collected Papers on Wave Mechanics by : Erwin Schrödinger
Download or read book Collected Papers on Wave Mechanics written by Erwin Schrödinger and published by American Mathematical Soc.. This book was released on 2003 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: The famous equation that bears Erwin Schrödinger's name encapsulates his profound contributions to quantum mechanics using wave mechanics. This third, augmented edition of his papers on the topic contains the six original, famous papers in which Schrödinger created and developed the subject of wave mechanics as published in the original edition. As the author points out, at the time each paper was written the results of the later papers were largely unknown to him. This edition also contains three papers that were written shortly after the original edition was published and four lectures delivered by Schrödinger at the Royal Institution in London in 1928. The papers and lectures in this volume were revised by the author and translated into English, and afford the reader a striking and valuable insight into how wave mechanics developed.
Book Synopsis Lectures on Quantum Mechanics by : Steven Weinberg
Download or read book Lectures on Quantum Mechanics written by Steven Weinberg and published by Cambridge University Press. This book was released on 2013 with total page 379 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Ideally suited to a one-year graduate course, this textbook is also a useful reference for researchers. Readers are introduced to the subject through a review of the history of quantum mechanics and an account of classic solutions of the Schr.
Book Synopsis The Principles of Quantum Mechanics by : Paul Adrien Maurice Dirac
Download or read book The Principles of Quantum Mechanics written by Paul Adrien Maurice Dirac and published by Oxford University Press. This book was released on 1981 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first edition of this work appeared in 1930, and its originality won it immediate recognition as a classic of modern physical theory. The fourth edition has been bought out to meet a continued demand. Some improvements have been made, the main one being the complete rewriting of the chapter on quantum electrodymanics, to bring in electron-pair creation. This makes it suitable as an introduction to recent works on quantum field theories.
Download or read book University Physics written by OpenStax and published by . This book was released on 2016-11-04 with total page 622 pages. Available in PDF, EPUB and Kindle. Book excerpt: University Physics is a three-volume collection that meets the scope and sequence requirements for two- and three-semester calculus-based physics courses. Volume 1 covers mechanics, sound, oscillations, and waves. Volume 2 covers thermodynamics, electricity and magnetism, and Volume 3 covers optics and modern physics. This textbook emphasizes connections between between theory and application, making physics concepts interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. Frequent, strong examples focus on how to approach a problem, how to work with the equations, and how to check and generalize the result. The text and images in this textbook are grayscale.
Book Synopsis The Theory of Space, Time and Gravitation by : V. Fock
Download or read book The Theory of Space, Time and Gravitation written by V. Fock and published by Elsevier. This book was released on 2015-08-11 with total page 461 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Theory of Space, Time, and Gravitation, 2nd Revised Edition focuses on Relativity Theory and Einstein's Theory of Gravitation and correction of the misinterpretation of the Einsteinian Gravitation Theory. The book first offers information on the theory of relativity and the theory of relativity in tensor form. Discussions focus on comparison of distances and lengths in moving reference frames; comparison of time differences in moving reference frames; position of a body in space at a given instant in a fixed reference frame; and proof of the linearity of the transformation linking two inertial frames. The text then ponders on general tensor analysis, including permissible transformations for space and time coordinates, parallel transport of a vector, covariant differentiation, and basic properties of the curvature tensor. The publication examines the formulation of relativity theory in arbitrary coordinates and principles of the theory of gravitation. Topics include equations of mathematical physics in arbitrary coordinates; integral form of the conservation laws in arbitrary coordinates; variational principle and the energy tensor; and comparison with the statement of the problem in Newtonian theory. The manuscript is a dependable reference for readers interested in the theory of space, time, and gravitation.
Book Synopsis Finite Difference Computing with PDEs by : Hans Petter Langtangen
Download or read book Finite Difference Computing with PDEs written by Hans Petter Langtangen and published by Springer. This book was released on 2017-06-21 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is open access under a CC BY 4.0 license. This easy-to-read book introduces the basics of solving partial differential equations by means of finite difference methods. Unlike many of the traditional academic works on the topic, this book was written for practitioners. Accordingly, it especially addresses: the construction of finite difference schemes, formulation and implementation of algorithms, verification of implementations, analyses of physical behavior as implied by the numerical solutions, and how to apply the methods and software to solve problems in the fields of physics and biology.
Book Synopsis Special Functions of Mathematical Physics by : NIKIFOROV
Download or read book Special Functions of Mathematical Physics written by NIKIFOROV and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 443 pages. Available in PDF, EPUB and Kindle. Book excerpt: With students of Physics chiefly in mind, we have collected the material on special functions that is most important in mathematical physics and quan tum mechanics. We have not attempted to provide the most extensive collec tion possible of information about special functions, but have set ourselves the task of finding an exposition which, based on a unified approach, ensures the possibility of applying the theory in other natural sciences, since it pro vides a simple and effective method for the independent solution of problems that arise in practice in physics, engineering and mathematics. For the American edition we have been able to improve a number of proofs; in particular, we have given a new proof of the basic theorem (§3). This is the fundamental theorem of the book; it has now been extended to cover difference equations of hypergeometric type (§§12, 13). Several sections have been simplified and contain new material. We believe that this is the first time that the theory of classical or thogonal polynomials of a discrete variable on both uniform and nonuniform lattices has been given such a coherent presentation, together with its various applications in physics.
Book Synopsis Introduction to Electrodynamics by : David J. Griffiths
Download or read book Introduction to Electrodynamics written by David J. Griffiths and published by Cambridge University Press. This book was released on 2017-06-29 with total page 619 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a re-issued and affordable printing of the widely used undergraduate electrodynamics textbook.
Book Synopsis Quantum Theory, Groups and Representations by : Peter Woit
Download or read book Quantum Theory, Groups and Representations written by Peter Woit and published by Springer. This book was released on 2017-11-01 with total page 659 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text systematically presents the basics of quantum mechanics, emphasizing the role of Lie groups, Lie algebras, and their unitary representations. The mathematical structure of the subject is brought to the fore, intentionally avoiding significant overlap with material from standard physics courses in quantum mechanics and quantum field theory. The level of presentation is attractive to mathematics students looking to learn about both quantum mechanics and representation theory, while also appealing to physics students who would like to know more about the mathematics underlying the subject. This text showcases the numerous differences between typical mathematical and physical treatments of the subject. The latter portions of the book focus on central mathematical objects that occur in the Standard Model of particle physics, underlining the deep and intimate connections between mathematics and the physical world. While an elementary physics course of some kind would be helpful to the reader, no specific background in physics is assumed, making this book accessible to students with a grounding in multivariable calculus and linear algebra. Many exercises are provided to develop the reader's understanding of and facility in quantum-theoretical concepts and calculations.