Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Numerical Solution Of The Riemann Problem For Two Dimensional Gas Dynamics
Download Numerical Solution Of The Riemann Problem For Two Dimensional Gas Dynamics full books in PDF, epub, and Kindle. Read online Numerical Solution Of The Riemann Problem For Two Dimensional Gas Dynamics ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis The Two-Dimensional Riemann Problem in Gas Dynamics by : Jiequan Li
Download or read book The Two-Dimensional Riemann Problem in Gas Dynamics written by Jiequan Li and published by Taylor & Francis. This book was released on 2022-02-13 with total page 311 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Riemann problem is the most fundamental problem in the entire field of non-linear hyperbolic conservation laws. Since first posed and solved in 1860, great progress has been achieved in the one-dimensional case. However, the two-dimensional case is substantially different. Although research interest in it has lasted more than a century, it has yielded almost no analytical demonstration. It remains a great challenge for mathematicians. This volume presents work on the two-dimensional Riemann problem carried out over the last 20 years by a Chinese group. The authors explore four models: scalar conservation laws, compressible Euler equations, zero-pressure gas dynamics, and pressure-gradient equations. They use the method of generalized characteristic analysis plus numerical experiments to demonstrate the elementary field interaction patterns of shocks, rarefaction waves, and slip lines. They also discover a most interesting feature for zero-pressure gas dynamics: a new kind of elementary wave appearing in the interaction of slip lines-a weighted Dirac delta shock of the density function. The Two-Dimensional Riemann Problem in Gas Dynamics establishes the rigorous mathematical theory of delta-shocks and Mach reflection-like patterns for zero-pressure gas dynamics, clarifies the boundaries of interaction of elementary waves, demonstrates the interesting spatial interaction of slip lines, and proposes a series of open problems. With applications ranging from engineering to astrophysics, and as the first book to examine the two-dimensional Riemann problem, this volume will prove fascinating to mathematicians and hold great interest for physicists and engineers.
Book Synopsis The Two-Dimensional Riemann Problem in Gas Dynamics by : Jiequan Li
Download or read book The Two-Dimensional Riemann Problem in Gas Dynamics written by Jiequan Li and published by Routledge. This book was released on 2022-02-13 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Riemann problem is the most fundamental problem in the entire field of non-linear hyperbolic conservation laws. Since first posed and solved in 1860, great progress has been achieved in the one-dimensional case. However, the two-dimensional case is substantially different. Although research interest in it has lasted more than a century, it has yielded almost no analytical demonstration. It remains a great challenge for mathematicians. This volume presents work on the two-dimensional Riemann problem carried out over the last 20 years by a Chinese group. The authors explore four models: scalar conservation laws, compressible Euler equations, zero-pressure gas dynamics, and pressure-gradient equations. They use the method of generalized characteristic analysis plus numerical experiments to demonstrate the elementary field interaction patterns of shocks, rarefaction waves, and slip lines. They also discover a most interesting feature for zero-pressure gas dynamics: a new kind of elementary wave appearing in the interaction of slip lines-a weighted Dirac delta shock of the density function. The Two-Dimensional Riemann Problem in Gas Dynamics establishes the rigorous mathematical theory of delta-shocks and Mach reflection-like patterns for zero-pressure gas dynamics, clarifies the boundaries of interaction of elementary waves, demonstrates the interesting spatial interaction of slip lines, and proposes a series of open problems. With applications ranging from engineering to astrophysics, and as the first book to examine the two-dimensional Riemann problem, this volume will prove fascinating to mathematicians and hold great interest for physicists and engineers.
Book Synopsis Riemann Problems and Jupyter Solutions by : David I. Ketcheson
Download or read book Riemann Problems and Jupyter Solutions written by David I. Ketcheson and published by SIAM. This book was released on 2020-06-26 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses an important class of mathematical problems (the Riemann problem) for first-order hyperbolic partial differential equations (PDEs), which arise when modeling wave propagation in applications such as fluid dynamics, traffic flow, acoustics, and elasticity. The solution of the Riemann problem captures essential information about these models and is the key ingredient in modern numerical methods for their solution. This book covers the fundamental ideas related to classical Riemann solutions, including their special structure and the types of waves that arise, as well as the ideas behind fast approximate solvers for the Riemann problem. The emphasis is on the general ideas, but each chapter delves into a particular application. Riemann Problems and Jupyter Solutions is available in electronic form as a collection of Jupyter notebooks that contain executable computer code and interactive figures and animations, allowing readers to grasp how the concepts presented are affected by important parameters and to experiment by varying those parameters themselves. The only interactive book focused entirely on the Riemann problem, it develops each concept in the context of a specific physical application, helping readers apply physical intuition in learning mathematical concepts. Graduate students and researchers working in the analysis and/or numerical solution of hyperbolic PDEs will find this book of interest. This includes mathematicians, as well as scientists and engineers, working on wave propagation problems. Educators interested in developing instructional materials using Jupyter notebooks will also find this book useful. The book is appropriate for courses in Numerical Methods for Hyperbolic PDEs and Analysis of Hyperbolic PDEs, and it can be a great supplement for courses in computational fluid dynamics, acoustics, and gas dynamics.
Book Synopsis The Riemann Problem for the Transportation Equations in Gas Dynamics by : Wancheng Sheng
Download or read book The Riemann Problem for the Transportation Equations in Gas Dynamics written by Wancheng Sheng and published by American Mathematical Soc.. This book was released on 1999 with total page 93 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this volume, the one-dimensional and two-dimensional Riemann problems for the transportation equations in gas dynamics are solved constructively. In either the 1-D or 2-D case, there are only two kinds of solutions: one involves Dirac delta waves, and the other involves vacuums, which has been merely discussed so far. The generalized Rankine-Hugoniot and entropy conditions for Dirac delta waves are clarified with viscous vanishing method. All of the existence, uniqueness and stability for viscous perturbations are proved analytically
Book Synopsis Systems of Conservation Laws by : Yuxi Zheng
Download or read book Systems of Conservation Laws written by Yuxi Zheng and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work should serve as an introductory text for graduate students and researchers working in the important area of partial differential equations with a focus on problems involving conservation laws. The only requisite for the reader is a knowledge of the elementary theory of partial differential equations. Key features of this work include: * broad range of topics, from the classical treatment to recent results, dealing with solutions to 2D compressible Euler equations * good review of basic concepts (1-D Riemann problems) * concrete solutions presented, with many examples, over 100 illustrations, open problems, and numerical schemes * numerous exercises, comprehensive bibliography and index * appeal to a wide audience of applied mathematicians, graduate students, physicists, and engineers Written in a clear, accessible style, the book emphasizes more recent results that will prepare readers to meet modern challenges in the subject, that is, to carry out theoretical, numerical, and asymptotical analysis.
Book Synopsis Generalized Riemann Problems in Computational Fluid Dynamics by : Matania Ben-Artzi
Download or read book Generalized Riemann Problems in Computational Fluid Dynamics written by Matania Ben-Artzi and published by Cambridge University Press. This book was released on 2003-04-10 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical simulation of compressible, inviscid time-dependent flow is a major branch of computational fluid dynamics. Its primary goal is to obtain accurate representation of the time evolution of complex flow patterns, involving interactions of shocks, interfaces, and rarefaction waves. The Generalized Riemann Problem (GRP) algorithm, developed by the authors for this purpose, provides a unifying 'shell' which comprises some of the most commonly used numerical schemes of this process. This monograph gives a systematic presentation of the GRP methodology, starting from the underlying mathematical principles, through basic scheme analysis and scheme extensions (such as reacting flow or two-dimensional flows involving moving or stationary boundaries). An array of instructive examples illustrates the range of applications, extending from (simple) scalar equations to computational fluid dynamics. Background material from mathematical analysis and fluid dynamics is provided, making the book accessible to both researchers and graduate students of applied mathematics, science and engineering.
Book Synopsis Handbook of Numerical Methods for Hyperbolic Problems by : Remi Abgrall
Download or read book Handbook of Numerical Methods for Hyperbolic Problems written by Remi Abgrall and published by Elsevier. This book was released on 2017-01-16 with total page 612 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook on Numerical Methods for Hyperbolic Problems: Applied and Modern Issues details the large amount of literature in the design, analysis, and application of various numerical algorithms for solving hyperbolic equations that has been produced in the last several decades. This volume provides concise summaries from experts in different types of algorithms, so that readers can find a variety of algorithms under different situations and become familiar with their relative advantages and limitations. - Provides detailed, cutting-edge background explanations of existing algorithms and their analysis - Presents a method of different algorithms for specific applications and the relative advantages and limitations of different algorithms for engineers or those involved in applications - Written by leading subject experts in each field, the volumes provide breadth and depth of content coverage
Book Synopsis Mathematical Aspects of Numerical Solution of Hyperbolic Systems by : A.G. Kulikovskii
Download or read book Mathematical Aspects of Numerical Solution of Hyperbolic Systems written by A.G. Kulikovskii and published by CRC Press. This book was released on 2000-12-21 with total page 564 pages. Available in PDF, EPUB and Kindle. Book excerpt: This important new book sets forth a comprehensive description of various mathematical aspects of problems originating in numerical solution of hyperbolic systems of partial differential equations. The authors present the material in the context of the important mechanical applications of such systems, including the Euler equations of gas dynamics, magnetohydrodynamics (MHD), shallow water, and solid dynamics equations. This treatment provides-for the first time in book form-a collection of recipes for applying higher-order non-oscillatory shock-capturing schemes to MHD modelling of physical phenomena. The authors also address a number of original "nonclassical" problems, such as shock wave propagation in rods and composite materials, ionization fronts in plasma, and electromagnetic shock waves in magnets. They show that if a small-scale, higher-order mathematical model results in oscillations of the discontinuity structure, the variety of admissible discontinuities can exhibit disperse behavior, including some with additional boundary conditions that do not follow from the hyperbolic conservation laws. Nonclassical problems are accompanied by a multiple nonuniqueness of solutions. The authors formulate several selection rules, which in some cases easily allow a correct, physically realizable choice. This work systematizes methods for overcoming the difficulties inherent in the solution of hyperbolic systems. Its unique focus on applications, both traditional and new, makes Mathematical Aspects of Numerical Solution of Hyperbolic Systems particularly valuable not only to those interested the development of numerical methods, but to physicists and engineers who strive to solve increasingly complicated nonlinear equations.
Book Synopsis Transactions of the Second Army Conference on Applied Mathematics and Computing by :
Download or read book Transactions of the Second Army Conference on Applied Mathematics and Computing written by and published by . This book was released on 1986 with total page 956 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis The Courant–Friedrichs–Lewy (CFL) Condition by : Carlos A. de Moura
Download or read book The Courant–Friedrichs–Lewy (CFL) Condition written by Carlos A. de Moura and published by Springer Science & Business Media. This book was released on 2012-10-28 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume comprises a carefully selected collection of articles emerging from and pertinent to the 2010 CFL-80 conference in Rio de Janeiro, celebrating the 80th anniversary of the Courant-Friedrichs-Lewy (CFL) condition. A major result in the field of numerical analysis, the CFL condition has influenced the research of many important mathematicians over the past eight decades, and this work is meant to take stock of its most important and current applications. The Courant–Friedrichs–Lewy (CFL) Condition: 80 Years After its Discovery will be of interest to practicing mathematicians, engineers, physicists, and graduate students who work with numerical methods.
Book Synopsis Nonlinear Hyperbolic Problems: Theoretical, Applied, and Computational Aspects by : Andrea Donato
Download or read book Nonlinear Hyperbolic Problems: Theoretical, Applied, and Computational Aspects written by Andrea Donato and published by Springer Science & Business Media. This book was released on 2013-03-08 with total page 623 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Handbook of Mathematical Fluid Dynamics by : S. Friedlander
Download or read book Handbook of Mathematical Fluid Dynamics written by S. Friedlander and published by Elsevier. This book was released on 2002-07-09 with total page 829 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook of Mathematical Fluid Dynamics is a compendium of essays that provides a survey of the major topics in the subject. Each article traces developments, surveys the results of the past decade, discusses the current state of knowledge and presents major future directions and open problems. Extensive bibliographic material is provided. The book is intended to be useful both to experts in the field and to mathematicians and other scientists who wish to learn about or begin research in mathematical fluid dynamics. The Handbook illuminates an exciting subject that involves rigorous mathematical theory applied to an important physical problem, namely the motion of fluids.
Book Synopsis Advances in Kinetic Theory and Computing by : B. Perthame
Download or read book Advances in Kinetic Theory and Computing written by B. Perthame and published by World Scientific. This book was released on 1994 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: This selection of 8 papers discusses ?Equations of Kinetic Physics? with emphasis on analysis, modelling and computing. The first 3 papers are on numerical methods for Vlasov-Poisson and Vlasov-Maxwell Equations ? Comparison between Particles and Eulerian Methods (G Manfredi and M R Feix), Computing BGK Instability with Eulerian Codes (M R Feix, Pertrand & A Ghieco) and Coupling Particles and Eulerian Methods (S Mas-Gallic and P A Raviart) ? Followed by a survey of kinetic and macroscopic models for semiconductor devices ? Boltzmann Equation, Drift-Diffusion Models (F Poupaud). In addition, there are 2 papers on the modelling and analysis of singular perturbation problems arising in plasma physics ? Derivation of the Child-Lagmuyr Emission Laws (P Degond) and Euler Models with Small Pressure Terms (F Bouchut) ? followed by two papers on the analysis and numerical analysis of the Boltzmann equations ? Symmetry Properties in the Polynomials Arising in Chapman-Enskog Expansion (L Desvillettes and F Golse) and A General Introduction to Computing the Boltzmann Equations with Random Particle Methods (B Perthame).
Book Synopsis Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2020+1 by : Jens M. Melenk
Download or read book Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2020+1 written by Jens M. Melenk and published by Springer Nature. This book was released on 2023-06-30 with total page 571 pages. Available in PDF, EPUB and Kindle. Book excerpt: The volume features high-quality papers based on the presentations at the ICOSAHOM 2020+1 on spectral and high order methods. The carefully reviewed articles cover state of the art topics in high order discretizations of partial differential equations. The volume presents a wide range of topics including the design and analysis of high order methods, the development of fast solvers on modern computer architecture, and the application of these methods in fluid and structural mechanics computations.
Book Synopsis Numerical Methods for the Euler Equations of Fluid Dynamics by : F. Angrand
Download or read book Numerical Methods for the Euler Equations of Fluid Dynamics written by F. Angrand and published by SIAM. This book was released on 1985-01-01 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Author :Miloslav Feistauer Publisher :Springer Science & Business Media ISBN 13 :9783540214601 Total Pages :1246 pages Book Rating :4.2/5 (146 download)
Book Synopsis Numerical Mathematics and Advanced Applications by : Miloslav Feistauer
Download or read book Numerical Mathematics and Advanced Applications written by Miloslav Feistauer and published by Springer Science & Business Media. This book was released on 2004-08-12 with total page 1246 pages. Available in PDF, EPUB and Kindle. Book excerpt: These proceedings collect the major part of the lectures given at ENU MATH2003, the European Conference on Numerical Mathematics and Ad vanced Applications, held in Prague, Czech Republic, from 18 August to 22 August, 2003. The importance of numerical and computational mathematics and sci entific computing is permanently growing. There is an increasing number of different research areas, where numerical simulation is necessary. Let us men tion fluid dynamics, continuum mechanics, electromagnetism, phase transi tion, cosmology, medicine, economics, finance, etc. The success of applications of numerical methods is conditioned by changing its basic instruments and looking for new appropriate techniques adapted to new problems as well as new computer architectures. The ENUMATH conferences were established in order to provide a fo rum for discussion of current topics of numerical mathematics. They seek to convene leading experts and young scientists with special emphasis on con tributions from Europe. Recent results and new trends are discussed in the analysis of numerical algorithms as well as in their applications to challenging scientific and industrial problems. The first ENUMATH conference was organized in Paris in 1995, then the series continued by the conferences in Heidelberg 1997, Jyvaskyla 1999 and Ischia Porto 2001. It was a great pleasure and honour for the Czech numerical community that it was decided at Ischia Porto to organize the ENUMATH2003 in Prague. It was the first time when this conference crossed the former Iron Courtain and was organized in a postsocialist country.
Book Synopsis Progress in Industrial Mathematics at ECMI 2000 by : Angelo M. Anile
Download or read book Progress in Industrial Mathematics at ECMI 2000 written by Angelo M. Anile and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 667 pages. Available in PDF, EPUB and Kindle. Book excerpt: Realizing the need of interaction between universities and research groups in industry, the European Consortium for Mathematics in Industry (ECMI) was founded in 1986 by mathematicians from ten European universities. Since then it has been continuously extending and now it involves about all Euro pean countries. The aims of ECMI are • To promote the use of mathematical models in industry. • To educate industrial mathematicians to meet the growing demand for such experts. • To operate on a European Scale. Mathematics, as the language of the sciences, has always played an im portant role in technology, and now is applied also to a variety of problems in commerce and the environment. European industry is increasingly becoming dependent on high technology and the need for mathematical expertise in both research and development can only grow. These new demands on mathematics have stimulated academic interest in Industrial Mathematics and many mathematical groups world-wide are committed to interaction with industry as part of their research activities. ECMI was founded with the intention of offering its collective knowledge and expertise to European Industry. The experience of ECMI members is that similar technical problems are encountered by different companies in different countries. It is also true that the same mathematical expertise may often be used in differing industrial applications.