Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Numerical Methods And Approximation Theory 2
Download Numerical Methods And Approximation Theory 2 full books in PDF, epub, and Kindle. Read online Numerical Methods And Approximation Theory 2 ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Functional Analysis, Approximation Theory, and Numerical Analysis by : John Michael Rassias
Download or read book Functional Analysis, Approximation Theory, and Numerical Analysis written by John Michael Rassias and published by World Scientific. This book was released on 1994 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book consists of papers written by outstanding mathematicians. It deals with both theoretical and applied aspects of the mathematical contributions of BANACH, ULAM, and OSTROWSKI, which broaden the horizons of Functional Analysis, Approximation Theory, and Numerical Analysis in accordance with contemporary mathematical standards.
Book Synopsis Approximation Theory and Approximation Practice, Extended Edition by : Lloyd N. Trefethen
Download or read book Approximation Theory and Approximation Practice, Extended Edition written by Lloyd N. Trefethen and published by SIAM. This book was released on 2019-01-01 with total page 377 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a textbook on classical polynomial and rational approximation theory for the twenty-first century. Aimed at advanced undergraduates and graduate students across all of applied mathematics, it uses MATLAB to teach the fields most important ideas and results. Approximation Theory and Approximation Practice, Extended Edition differs fundamentally from other works on approximation theory in a number of ways: its emphasis is on topics close to numerical algorithms; concepts are illustrated with Chebfun; and each chapter is a PUBLISHable MATLAB M-file, available online. The book centers on theorems and methods for analytic functions, which appear so often in applications, rather than on functions at the edge of discontinuity with their seductive theoretical challenges. Original sources are cited rather than textbooks, and each item in the bibliography is accompanied by an editorial comment. In addition, each chapter has a collection of exercises, which span a wide range from mathematical theory to Chebfun-based numerical experimentation. This textbook is appropriate for advanced undergraduate or graduate students who have an understanding of numerical analysis and complex analysis. It is also appropriate for seasoned mathematicians who use MATLAB.
Book Synopsis Theory and Applications of Numerical Analysis by : G. M. Phillips
Download or read book Theory and Applications of Numerical Analysis written by G. M. Phillips and published by Elsevier. This book was released on 1996-07-05 with total page 461 pages. Available in PDF, EPUB and Kindle. Book excerpt: Theory and Applications of Numerical Analysis is a self-contained Second Edition, providing an introductory account of the main topics in numerical analysis. The book emphasizes both the theorems which show the underlying rigorous mathematics andthe algorithms which define precisely how to program the numerical methods. Both theoretical and practical examples are included. - a unique blend of theory and applications - two brand new chapters on eigenvalues and splines - inclusion of formal algorithms - numerous fully worked examples - a large number of problems, many with solutions
Book Synopsis Splines and PDEs: From Approximation Theory to Numerical Linear Algebra by : Angela Kunoth
Download or read book Splines and PDEs: From Approximation Theory to Numerical Linear Algebra written by Angela Kunoth and published by Springer. This book was released on 2018-09-20 with total page 325 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book takes readers on a multi-perspective tour through state-of-the-art mathematical developments related to the numerical treatment of PDEs based on splines, and in particular isogeometric methods. A wide variety of research topics are covered, ranging from approximation theory to structured numerical linear algebra. More precisely, the book provides (i) a self-contained introduction to B-splines, with special focus on approximation and hierarchical refinement, (ii) a broad survey of numerical schemes for control problems based on B-splines and B-spline-type wavelets, (iii) an exhaustive description of methods for computing and analyzing the spectral distribution of discretization matrices, and (iv) a detailed overview of the mathematical and implementational aspects of isogeometric analysis. The text is the outcome of a C.I.M.E. summer school held in Cetraro (Italy), July 2017, featuring four prominent lecturers with different theoretical and application perspectives. The book may serve both as a reference and an entry point into further research.
Book Synopsis Approximation Theory and Methods by : M. J. D. Powell
Download or read book Approximation Theory and Methods written by M. J. D. Powell and published by Cambridge University Press. This book was released on 1981-03-31 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: Most functions that occur in mathematics cannot be used directly in computer calculations. Instead they are approximated by manageable functions such as polynomials and piecewise polynomials. The general theory of the subject and its application to polynomial approximation are classical, but piecewise polynomials have become far more useful during the last twenty years. Thus many important theoretical properties have been found recently and many new techniques for the automatic calculation of approximations to prescribed accuracy have been developed. This book gives a thorough and coherent introduction to the theory that is the basis of current approximation methods. Professor Powell describes and analyses the main techniques of calculation supplying sufficient motivation throughout the book to make it accessible to scientists and engineers who require approximation methods for practical needs. Because the book is based on a course of lectures to third-year undergraduates in mathematics at Cambridge University, sufficient attention is given to theory to make it highly suitable as a mathematical textbook at undergraduate or postgraduate level.
Book Synopsis Numerical Analysis of Spectral Methods by : David Gottlieb
Download or read book Numerical Analysis of Spectral Methods written by David Gottlieb and published by SIAM. This book was released on 1977-01-01 with total page 167 pages. Available in PDF, EPUB and Kindle. Book excerpt: A unified discussion of the formulation and analysis of special methods of mixed initial boundary-value problems. The focus is on the development of a new mathematical theory that explains why and how well spectral methods work. Included are interesting extensions of the classical numerical analysis.
Book Synopsis Weighted Polynomial Approximation and Numerical Methods for Integral Equations by : Peter Junghanns
Download or read book Weighted Polynomial Approximation and Numerical Methods for Integral Equations written by Peter Junghanns and published by Birkhäuser. This book was released on 2022-08-13 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents a combination of two topics: one coming from the theory of approximation of functions and integrals by interpolation and quadrature, respectively, and the other from the numerical analysis of operator equations, in particular, of integral and related equations. The text focusses on interpolation and quadrature processes for functions defined on bounded and unbounded intervals and having certain singularities at the endpoints of the interval, as well as on numerical methods for Fredholm integral equations of first and second kind with smooth and weakly singular kernel functions, linear and nonlinear Cauchy singular integral equations, and hypersingular integral equations. The book includes both classic and very recent results and will appeal to graduate students and researchers who want to learn about the approximation of functions and the numerical solution of operator equations, in particular integral equations.
Book Synopsis Analysis II by : Revaz V. Gamkrelidze
Download or read book Analysis II written by Revaz V. Gamkrelidze and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intended for a wide range of readers, this book covers the main ideas of convex analysis and approximation theory. The author discusses the sources of these two trends in mathematical analysis, develops the main concepts and results, and mentions some beautiful theorems. The relationship of convex analysis to optimization problems, to the calculus of variations, to optimal control and to geometry is considered, and the evolution of the ideas underlying approximation theory, from its origins to the present day, is discussed. The book is addressed both to students who want to acquaint themselves with these trends and to lecturers in mathematical analysis, optimization and numerical methods, as well as to researchers in these fields who would like to tackle the topic as a whole and seek inspiration for its further development.
Book Synopsis Topics in Numerical Analysis II by : John J.H. Miller
Download or read book Topics in Numerical Analysis II written by John J.H. Miller and published by Elsevier. This book was released on 2012-12-02 with total page 281 pages. Available in PDF, EPUB and Kindle. Book excerpt: Topics in Numerical Analysis II contains in complete form, the papers given by the invited speakers to the Conference on Numerical Analysis held under the auspices of the National Committee for Mathematics of the Royal Irish Academy at University College, Dublin from 29th July to 2nd August, 1974. In addition, the titles of the contributed papers are listed together with the names and addresses of the authors who presented them at the conference. This book is divided into 20 chapters that present the papers in their entirety. They discuss such topics as applications of approximation theory to numerical analysis; interior regularity and local convergence of Galerkin finite element approximations for elliptic equations; and numerical estimates for the error of Gauss-Jacobi quadrature formulae. Some remarks on the unified treatment of elementary functions by microprogramming; application of finite difference methods to exploration seismology; and variable coefficient multistep methods for ordinary differential equations applied to parabolic partial differential equations are also presented. Other chapters cover realistic estimates for generic constants in multivariate pointwise approximation; matching of essential boundary conditions in the finite element method; and collocation, difference equations, and stitched function representations. This book will be of interest to practitioners in the fields of mathematics and computer science.
Book Synopsis Functional Analysis and Approximation Theory in Numerical Analysis by : R. S. Varga
Download or read book Functional Analysis and Approximation Theory in Numerical Analysis written by R. S. Varga and published by SIAM. This book was released on 1971-01-01 with total page 81 pages. Available in PDF, EPUB and Kindle. Book excerpt: Surveys the enormous literature on numerical approximation of solutions of elliptic boundary problems by means of variational and finite element methods, requiring almost constant application of results and techniques from functional analysis and approximation theory to the field of numerical analysis.
Book Synopsis Numerical Approximation Methods by : Harold Cohen
Download or read book Numerical Approximation Methods written by Harold Cohen and published by Springer Science & Business Media. This book was released on 2011-09-28 with total page 493 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents numerical and other approximation techniques for solving various types of mathematical problems that cannot be solved analytically. In addition to well known methods, it contains some non-standard approximation techniques that are now formally collected as well as original methods developed by the author that do not appear in the literature. This book contains an extensive treatment of approximate solutions to various types of integral equations, a topic that is not often discussed in detail. There are detailed analyses of ordinary and partial differential equations and descriptions of methods for estimating the values of integrals that are presented in a level of detail that will suggest techniques that will be useful for developing methods for approximating solutions to problems outside of this text. The book is intended for researchers who must approximate solutions to problems that cannot be solved analytically. It is also appropriate for students taking courses in numerical approximation techniques.
Book Synopsis Numerical Methods of Approximation Theory, Vol.6 \ Numerische Methoden der Approximationstheorie, Band 6 by : Collatz
Download or read book Numerical Methods of Approximation Theory, Vol.6 \ Numerische Methoden der Approximationstheorie, Band 6 written by Collatz and published by Birkhäuser. This book was released on 2012-12-06 with total page 267 pages. Available in PDF, EPUB and Kindle. Book excerpt: Der Band enthalt Manuskripte zu Vortragen, die auf einer von den Herausgebern geleiteten Tagung tiber "Numerische Methoden der Approximationstheorie" am Mathematischen Forschungsinstitut Ober wolfach in der Zeit vom 18.-24. Januar 1981 gehalten wurden. Das Spektrum der Vortrage reichte von der klassischen Approximations theorie tiber mehrdimensionale Approximationsverfahren bis hin zu praxisbezogenen Fragestellungen. Zu den zuerst genannten Gebieten gehorten z. B. die Verfeinerung von Fehlerabschatzungen bei der Polynominterpolation, Fragen zur Eindeutigkeit, Charakterisierung optimaler Interpolationsprozesse und Algorithmen zur rationalen Interpolation. Bei den weiteren genannten Gebieten spiegel ten zahlreiche Vortrage das steigende Interesse an der mehrdimensio nalen Interpolation, insbesondere mit verschiedenen Arten von Splines wider. Hier standen u. a. Probleme der Parameterschatzung in der Medizin und Flugtechnik, Fragen der Approximationstheorie bei der Konstruktion von Plottern und stabile Algorithmen beim Arbeiten mit mehrdimensionalen B-Splines im Mittelpunkt des Interesses. Die Tagung lieferte einen reprasentativen Ueberblick tiber die aktuellen Trends in der Approximationstheorie. Zum guten Erfolg der Tagung trug wie immer die hervorragende Be treuung durch die Mitarbeiter und Angestellten des Instituts so-' wie das verstandnisvolle Entgegenkommen des Institutsdirektors, Herrn Professor Dr. Barner, bei. Un serer besonderer Dank gilt dem Birkhauser Verlag ftir die wie stets sehr gute Ausstattung. Helmut Werner Lothar Collatz Gtinther Meinardus Hamburg Mannheim Bonn 7 INDEX Blatt, H.-P. Strenge Eindeutigkeitskonstanten und Fehlerabschatzungen bei linearer Tschebyscheff-Approximation 9 Bohmer, K. Polynom- und Spline-Interpolation (Ein Farbfilm) 26 Brannigan, M.A Multivariate Adaptive Data Fitting Algorithm 30 Brass, H. Zur numerischen Berechnung konjugierter Funktionen 43 Bultheel, A
Book Synopsis Theoretical Numerical Analysis by : Burton Wendroff
Download or read book Theoretical Numerical Analysis written by Burton Wendroff and published by Elsevier. This book was released on 2014-05-12 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: Theoretical Numerical Analysis focuses on the presentation of numerical analysis as a legitimate branch of mathematics. The publication first elaborates on interpolation and quadrature and approximation. Discussions focus on the degree of approximation by polynomials, Chebyshev approximation, orthogonal polynomials and Gaussian quadrature, approximation by interpolation, nonanalytic interpolation and associated quadrature, and Hermite interpolation. The text then ponders on ordinary differential equations and solutions of equations. Topics include iterative methods for nonlinear systems, matrix eigenvalue problems, matrix inversion by triangular decomposition, homogeneous boundary value problems, and initial value problems. The publication takes a look at partial differential equations, including heat equation, stability, maximum principle, and first order systems. The manuscript is a vital source of data for mathematicians and researchers interested in theoretical numerical analysis.
Book Synopsis Theory and Numerical Approximations of Fractional Integrals and Derivatives by : Changpin Li
Download or read book Theory and Numerical Approximations of Fractional Integrals and Derivatives written by Changpin Li and published by SIAM. This book was released on 2019-10-31 with total page 327 pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to its ubiquity across a variety of fields in science and engineering, fractional calculus has gained momentum in industry and academia. While a number of books and papers introduce either fractional calculus or numerical approximations, no current literature provides a comprehensive collection of both topics. This monograph introduces fundamental information on fractional calculus, provides a detailed treatment of existing numerical approximations, and presents an inclusive review of fractional calculus in terms of theory and numerical methods and systematically examines almost all existing numerical approximations for fractional integrals and derivatives. The authors consider the relationship between the fractional Laplacian and the Riesz derivative, a key component absent from other related texts, and highlight recent developments, including their own research and results. The core audience spans several fractional communities, including those interested in fractional partial differential equations, the fractional Laplacian, and applied and computational mathematics. Advanced undergraduate and graduate students will find the material suitable as a primary or supplementary resource for their studies.
Book Synopsis Numerical Mathematics by : Alfio Quarteroni
Download or read book Numerical Mathematics written by Alfio Quarteroni and published by Springer. This book was released on 2017-01-26 with total page 669 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this book is to provide the mathematical foundations of numerical methods, to analyze their basic theoretical properties and to demonstrate their performances on examples and counterexamples. Within any specific class of problems, the most appropriate scientific computing algorithms are reviewed, their theoretical analyses are carried out and the expected results are verified using the MATLAB software environment. Each chapter contains examples, exercises and applications of the theory discussed to the solution of real-life problems. While addressed to senior undergraduates and graduates in engineering, mathematics, physics and computer sciences, this text is also valuable for researchers and users of scientific computing in a large variety of professional fields.
Book Synopsis Introduction to Numerical Analysis by : J. Stoer
Download or read book Introduction to Numerical Analysis written by J. Stoer and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 674 pages. Available in PDF, EPUB and Kindle. Book excerpt: On the occasion of this new edition, the text was enlarged by several new sections. Two sections on B-splines and their computation were added to the chapter on spline functions: Due to their special properties, their flexibility, and the availability of well-tested programs for their computation, B-splines play an important role in many applications. Also, the authors followed suggestions by many readers to supplement the chapter on elimination methods with a section dealing with the solution of large sparse systems of linear equations. Even though such systems are usually solved by iterative methods, the realm of elimination methods has been widely extended due to powerful techniques for handling sparse matrices. We will explain some of these techniques in connection with the Cholesky algorithm for solving positive definite linear systems. The chapter on eigenvalue problems was enlarged by a section on the Lanczos algorithm; the sections on the LR and QR algorithm were rewritten and now contain a description of implicit shift techniques. In order to some extent take into account the progress in the area of ordinary differential equations, a new section on implicit differential equa tions and differential-algebraic systems was added, and the section on stiff differential equations was updated by describing further methods to solve such equations.
Book Synopsis Numerical Methods in Approximation Theory, Vol. 9 by : D. Braess
Download or read book Numerical Methods in Approximation Theory, Vol. 9 written by D. Braess and published by Birkhäuser. This book was released on 2013-03-11 with total page 365 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the official proceedings of a conference on Numerical Methods in Approximation Theory which was held at the Mathematisches Forschungs institut in Oberwolfach during the week of November 24~30, 1991. It contains refereed and edited papers by 20 of the 49 participants. The book is dedicated to the memory of Prof. Lothar Collatz who main tained a long and active interest in numerical approximation. It is the ninth in a series of volumes published by Birkhiiuser resulting from conferences on the subject held at Oberwolfach, and co-organized by Prof. Collatz. We now briefly describe the contents of the book. The paper of BASZEN SKI, DELVOS and JESTER deals with blending using sine double series expan sions of functions defined on the unit square. In addition to giving explicit error estimates for partial sums and for interpolating sine polynomials, they also show that Boolean sums yield almost the same asymptotic error estimates as the conventional tensor-product approach, but with a reduced number of terms. The paper of BEATSON and LIGHT discusses approximation by quasi interpolants which are sums of scaled translates of a one-parameter family of functions. They do not require reproduction of low degree polynomials, but nevertheless are able to give error bounds and analyze quasi-interpolation based on Gaussians and exponentials. BINEV and JETTER deal with multivariate interpolation using shifts of a single basis function. They treat both gridded data and scattered data. As examples, they consider box splines and certain radial basis functions.