Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Numerical Integration 1
Download Numerical Integration 1 full books in PDF, epub, and Kindle. Read online Numerical Integration 1 ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Methods of Numerical Integration by : Philip J. Davis
Download or read book Methods of Numerical Integration written by Philip J. Davis and published by Academic Press. This book was released on 2014-05-10 with total page 628 pages. Available in PDF, EPUB and Kindle. Book excerpt: Methods of Numerical Integration, Second Edition describes the theoretical and practical aspects of major methods of numerical integration. Numerical integration is the study of how the numerical value of an integral can be found. This book contains six chapters and begins with a discussion of the basic principles and limitations of numerical integration. The succeeding chapters present the approximate integration rules and formulas over finite and infinite intervals. These topics are followed by a review of error analysis and estimation, as well as the application of functional analysis to numerical integration. A chapter describes the approximate integration in two or more dimensions. The final chapter looks into the goals and processes of automatic integration, with particular attention to the application of Tschebyscheff polynomials. This book will be of great value to theoreticians and computer programmers.
Download or read book APEX Calculus written by Gregory Hartman and published by . This book was released on 2015 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: APEX Calculus is a calculus textbook written for traditional college/university calculus courses. It has the look and feel of the calculus book you likely use right now (Stewart, Thomas & Finney, etc.). The explanations of new concepts is clear, written for someone who does not yet know calculus. Each section ends with an exercise set with ample problems to practice & test skills (odd answers are in the back).
Download or read book Calculus Volume 3 written by Edwin Herman and published by . This book was released on 2016-03-30 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Calculus is designed for the typical two- or three-semester general calculus course, incorporating innovative features to enhance student learning. The book guides students through the core concepts of calculus and helps them understand how those concepts apply to their lives and the world around them. Due to the comprehensive nature of the material, we are offering the book in three volumes for flexibility and efficiency. Volume 3 covers parametric equations and polar coordinates, vectors, functions of several variables, multiple integration, and second-order differential equations.
Book Synopsis Numerical Methods in Scientific Computing by : Germund Dahlquist
Download or read book Numerical Methods in Scientific Computing written by Germund Dahlquist and published by SIAM. This book was released on 2008-01-01 with total page 742 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new book from the authors of the classic book Numerical methods addresses the increasingly important role of numerical methods in science and engineering. More cohesive and comprehensive than any other modern textbook in the field, it combines traditional and well-developed topics with other material that is rarely found in numerical analysis texts, such as interval arithmetic, elementary functions, operator series, convergence acceleration, and continued fractions. Although this volume is self-contained, more comprehensive treatments of matrix computations will be given in a forthcoming volume. A supplementary Website contains three appendices: an introduction to matrix computations; a description of Mulprec, a MATLAB multiple precision package; and a guide to literature, algorithms, and software in numerical analysis. Review questions, problems, and computer exercises are also included. For use in an introductory graduate course in numerical analysis and for researchers who use numerical methods in science and engineering.
Book Synopsis Geometric Numerical Integration by : Ernst Hairer
Download or read book Geometric Numerical Integration written by Ernst Hairer and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 526 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with numerical methods that preserve properties of Hamiltonian systems, reversible systems, differential equations on manifolds and problems with highly oscillatory solutions. A complete self-contained theory of symplectic and symmetric methods, which include Runge-Kutta, composition, splitting, multistep and various specially designed integrators, is presented and their construction and practical merits are discussed. The long-time behaviour of the numerical solutions is studied using a backward error analysis (modified equations) combined with KAM theory. The book is illustrated by numerous figures, treats applications from physics and astronomy, and contains many numerical experiments and comparisons of different approaches.
Book Synopsis Numerical Integration by : Philip J. Davis
Download or read book Numerical Integration written by Philip J. Davis and published by . This book was released on 1960 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Practical Numerical Integration by : Gwynne Evans
Download or read book Practical Numerical Integration written by Gwynne Evans and published by . This book was released on 1993-08-24 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: Offers the quadrature user a selection of the most effective algorithms in each of the main areas of the subject. Topics range from Simpson's rule and Gaussian quadrature to recent research on irregular oscillatory and singular quadrature. A full set of test examples is given and implemented for each method discussed, demonstrating its practical limitations.
Book Synopsis A Concise Introduction to Geometric Numerical Integration by : Sergio Blanes
Download or read book A Concise Introduction to Geometric Numerical Integration written by Sergio Blanes and published by CRC Press. This book was released on 2017-11-22 with total page 287 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover How Geometric Integrators Preserve the Main Qualitative Properties of Continuous Dynamical Systems A Concise Introduction to Geometric Numerical Integration presents the main themes, techniques, and applications of geometric integrators for researchers in mathematics, physics, astronomy, and chemistry who are already familiar with numerical tools for solving differential equations. It also offers a bridge from traditional training in the numerical analysis of differential equations to understanding recent, advanced research literature on numerical geometric integration. The book first examines high-order classical integration methods from the structure preservation point of view. It then illustrates how to construct high-order integrators via the composition of basic low-order methods and analyzes the idea of splitting. It next reviews symplectic integrators constructed directly from the theory of generating functions as well as the important category of variational integrators. The authors also explain the relationship between the preservation of the geometric properties of a numerical method and the observed favorable error propagation in long-time integration. The book concludes with an analysis of the applicability of splitting and composition methods to certain classes of partial differential equations, such as the Schrödinger equation and other evolution equations. The motivation of geometric numerical integration is not only to develop numerical methods with improved qualitative behavior but also to provide more accurate long-time integration results than those obtained by general-purpose algorithms. Accessible to researchers and post-graduate students from diverse backgrounds, this introductory book gets readers up to speed on the ideas, methods, and applications of this field. Readers can reproduce the figures and results given in the text using the MATLAB® programs and model files available online.
Book Synopsis Numerical Methods that Work by : Forman S. Acton
Download or read book Numerical Methods that Work written by Forman S. Acton and published by American Mathematical Soc.. This book was released on 2020-07-31 with total page 580 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Quadrature Theory written by Helmut Brass and published by American Mathematical Soc.. This book was released on 2011-10-12 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: Every book on numerical analysis covers methods for the approximate calculation of definite integrals. The authors of this book provide a complementary treatment of the topic by presenting a coherent theory of quadrature methods that encompasses many deep and elegant results as well as a large number of interesting (solved and open) problems. The inclusion of the word ``theory'' in the title highlights the authors' emphasis on analytical questions, such as the existence and structure of quadrature methods and selection criteria based on strict error bounds for quadrature rules. Systematic analyses of this kind rely on certain properties of the integrand, called ``co-observations,'' which form the central organizing principle for the authors' theory, and distinguish their book from other texts on numerical integration. A wide variety of co-observations are examined, as a detailed understanding of these is useful for solving problems in practical contexts. While quadrature theory is often viewed as a branch of numerical analysis, its influence extends much further. It has been the starting point of many far-reaching generalizations in various directions, as well as a testing ground for new ideas and concepts. The material in this book should be accessible to anyone who has taken the standard undergraduate courses in linear algebra, advanced calculus, and real analysis.
Book Synopsis Ostrowski Type Inequalities and Applications in Numerical Integration by : Sever S. Dragomir
Download or read book Ostrowski Type Inequalities and Applications in Numerical Integration written by Sever S. Dragomir and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 491 pages. Available in PDF, EPUB and Kindle. Book excerpt: It was noted in the preface of the book "Inequalities Involving Functions and Their Integrals and Derivatives", Kluwer Academic Publishers, 1991, by D.S. Mitrinovic, J.E. Pecaric and A.M. Fink; since the writing of the classical book by Hardy, Littlewood and Polya (1934), the subject of differential and integral inequalities has grown by about 800%. Ten years on, we can confidently assert that this growth will increase even more significantly. Twenty pages of Chapter XV in the above mentioned book are devoted to integral inequalities involving functions with bounded derivatives, or, Ostrowski type inequalities. This is now itself a special domain of the Theory of Inequalities with many powerful results and a large number of applications in Numerical Integration, Probability Theory and Statistics, Information Theory and Integral Operator Theory. The main aim of the present book, jointly written by the members of the Vic toria University node of RGMIA (Research Group in Mathematical Inequali ties and Applications, http: I /rgmia. vu. edu. au) and Th. M. Rassias, is to present a selected number of results on Ostrowski type inequalities. Results for univariate and multivariate real functions and their natural applications in the error analysis of numerical quadrature for both simple and multiple integrals as well as for the Riemann-Stieltjes integral are given.
Book Synopsis Introduction to Python in Earth Science Data Analysis by : Maurizio Petrelli
Download or read book Introduction to Python in Earth Science Data Analysis written by Maurizio Petrelli and published by Springer Nature. This book was released on 2021-09-16 with total page 229 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook introduces the use of Python programming for exploring and modelling data in the field of Earth Sciences. It drives the reader from his very first steps with Python, like setting up the environment and starting writing the first lines of codes, to proficient use in visualizing, analyzing, and modelling data in the field of Earth Science. Each chapter contains explicative examples of code, and each script is commented in detail. The book is minded for very beginners in Python programming, and it can be used in teaching courses at master or PhD levels. Also, Early careers and experienced researchers who would like to start learning Python programming for the solution of geological problems will benefit the reading of the book.
Book Synopsis Numerical Methods for Scientists and Engineers by : Richard Wesley Hamming
Download or read book Numerical Methods for Scientists and Engineers written by Richard Wesley Hamming and published by . This book was released on 1962 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Numerical Integration 1 by : W. F. Eberlein
Download or read book Numerical Integration 1 written by W. F. Eberlein and published by . This book was released on 1954 with total page 18 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis An Introduction to Numerical Methods and Analysis by : James F. Epperson
Download or read book An Introduction to Numerical Methods and Analysis written by James F. Epperson and published by John Wiley & Sons. This book was released on 2013-06-06 with total page 579 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for the First Edition ". . . outstandingly appealing with regard to its style, contents, considerations of requirements of practice, choice of examples, and exercises." —Zentrablatt Math ". . . carefully structured with many detailed worked examples . . ." —The Mathematical Gazette ". . . an up-to-date and user-friendly account . . ." —Mathematika An Introduction to Numerical Methods and Analysis addresses the mathematics underlying approximation and scientific computing and successfully explains where approximation methods come from, why they sometimes work (or don't work), and when to use one of the many techniques that are available. Written in a style that emphasizes readability and usefulness for the numerical methods novice, the book begins with basic, elementary material and gradually builds up to more advanced topics. A selection of concepts required for the study of computational mathematics is introduced, and simple approximations using Taylor's Theorem are also treated in some depth. The text includes exercises that run the gamut from simple hand computations, to challenging derivations and minor proofs, to programming exercises. A greater emphasis on applied exercises as well as the cause and effect associated with numerical mathematics is featured throughout the book. An Introduction to Numerical Methods and Analysis is the ideal text for students in advanced undergraduate mathematics and engineering courses who are interested in gaining an understanding of numerical methods and numerical analysis.
Book Synopsis CK-12 Calculus by : CK-12 Foundation
Download or read book CK-12 Calculus written by CK-12 Foundation and published by CK-12 Foundation. This book was released on 2010-08-15 with total page 603 pages. Available in PDF, EPUB and Kindle. Book excerpt: CK-12 Foundation's Single Variable Calculus FlexBook introduces high school students to the topics covered in the Calculus AB course. Topics include: Limits, Derivatives, and Integration.
Book Synopsis Analytical and Numerical Methods for Volterra Equations by : Peter Linz
Download or read book Analytical and Numerical Methods for Volterra Equations written by Peter Linz and published by SIAM. This book was released on 1985-01-01 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents an aspect of activity in integral equations methods for the solution of Volterra equations for those who need to solve real-world problems. Since there are few known analytical methods leading to closed-form solutions, the emphasis is on numerical techniques. The major points of the analytical methods used to study the properties of the solution are presented in the first part of the book. These techniques are important for gaining insight into the qualitative behavior of the solutions and for designing effective numerical methods. The second part of the book is devoted entirely to numerical methods. The author has chosen the simplest possible setting for the discussion, the space of real functions of real variables. The text is supplemented by examples and exercises.