Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Number Fields
Download Number Fields full books in PDF, epub, and Kindle. Read online Number Fields ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Download or read book Number Fields written by Daniel A. Marcus and published by Springer. This book was released on 2018-07-05 with total page 213 pages. Available in PDF, EPUB and Kindle. Book excerpt: Requiring no more than a basic knowledge of abstract algebra, this text presents the mathematics of number fields in a straightforward, pedestrian manner. It therefore avoids local methods and presents proofs in a way that highlights the important parts of the arguments. Readers are assumed to be able to fill in the details, which in many places are left as exercises.
Book Synopsis The Theory of Algebraic Number Fields by : David Hilbert
Download or read book The Theory of Algebraic Number Fields written by David Hilbert and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: A translation of Hilberts "Theorie der algebraischen Zahlkörper" best known as the "Zahlbericht", first published in 1897, in which he provides an elegantly integrated overview of the development of algebraic number theory up to the end of the nineteenth century. The Zahlbericht also provided a firm foundation for further research in the theory, and can be seen as the starting point for all twentieth century investigations into the subject, as well as reciprocity laws and class field theory. This English edition further contains an introduction by F. Lemmermeyer and N. Schappacher.
Book Synopsis Quadratic Number Fields by : Franz Lemmermeyer
Download or read book Quadratic Number Fields written by Franz Lemmermeyer and published by Springer Nature. This book was released on 2021-09-18 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: This undergraduate textbook provides an elegant introduction to the arithmetic of quadratic number fields, including many topics not usually covered in books at this level. Quadratic fields offer an introduction to algebraic number theory and some of its central objects: rings of integers, the unit group, ideals and the ideal class group. This textbook provides solid grounding for further study by placing the subject within the greater context of modern algebraic number theory. Going beyond what is usually covered at this level, the book introduces the notion of modularity in the context of quadratic reciprocity, explores the close links between number theory and geometry via Pell conics, and presents applications to Diophantine equations such as the Fermat and Catalan equations as well as elliptic curves. Throughout, the book contains extensive historical comments, numerous exercises (with solutions), and pointers to further study. Assuming a moderate background in elementary number theory and abstract algebra, Quadratic Number Fields offers an engaging first course in algebraic number theory, suitable for upper undergraduate students.
Book Synopsis Algebraic Number Fields by : Gerald J. Janusz
Download or read book Algebraic Number Fields written by Gerald J. Janusz and published by American Mathematical Soc.. This book was released on 1996 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text presents the basic information about finite dimensional extension fields of the rational numbers, algebraic number fields, and the rings of algebraic integers in them. The important theorems regarding the units of the ring of integers and the class group are proved and illustrated with many examples given in detail. The completion of an algebraic number field at a valuation is discussed in detail and then used to provide economical proofs of global results. The book contains many concrete examples illustrating the computation of class groups, class numbers, and Hilbert class fields. Exercises are provided to indicate applications of the general theory.
Book Synopsis Cohomology of Number Fields by : Jürgen Neukirch
Download or read book Cohomology of Number Fields written by Jürgen Neukirch and published by Springer Science & Business Media. This book was released on 2013-09-26 with total page 831 pages. Available in PDF, EPUB and Kindle. Book excerpt: This second edition is a corrected and extended version of the first. It is a textbook for students, as well as a reference book for the working mathematician, on cohomological topics in number theory. In all it is a virtually complete treatment of a vast array of central topics in algebraic number theory. New material is introduced here on duality theorems for unramified and tamely ramified extensions as well as a careful analysis of 2-extensions of real number fields.
Book Synopsis Number Theory in Function Fields by : Michael Rosen
Download or read book Number Theory in Function Fields written by Michael Rosen and published by Springer Science & Business Media. This book was released on 2013-04-18 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: Early in the development of number theory, it was noticed that the ring of integers has many properties in common with the ring of polynomials over a finite field. The first part of this book illustrates this relationship by presenting analogues of various theorems. The later chapters probe the analogy between global function fields and algebraic number fields. Topics include the ABC-conjecture, Brumer-Stark conjecture, and Drinfeld modules.
Book Synopsis Fourier Analysis on Number Fields by : Dinakar Ramakrishnan
Download or read book Fourier Analysis on Number Fields written by Dinakar Ramakrishnan and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: A modern approach to number theory through a blending of complementary algebraic and analytic perspectives, emphasising harmonic analysis on topological groups. The main goal is to cover John Tates visionary thesis, giving virtually all of the necessary analytic details and topological preliminaries -- technical prerequisites that are often foreign to the typical, more algebraically inclined number theorist. While most of the existing treatments of Tates thesis are somewhat terse and less than complete, the intent here is to be more leisurely, more comprehensive, and more comprehensible. While the choice of objects and methods is naturally guided by specific mathematical goals, the approach is by no means narrow. In fact, the subject matter at hand is germane not only to budding number theorists, but also to students of harmonic analysis or the representation theory of Lie groups. The text addresses students who have taken a year of graduate-level course in algebra, analysis, and topology. Moreover, the work will act as a good reference for working mathematicians interested in any of these fields.
Book Synopsis The Genus Fields of Algebraic Number Fields by : M. Ishida
Download or read book The Genus Fields of Algebraic Number Fields written by M. Ishida and published by Springer. This book was released on 2006-12-08 with total page 123 pages. Available in PDF, EPUB and Kindle. Book excerpt: a
Book Synopsis A Classical Invitation to Algebraic Numbers and Class Fields by : Harvey Cohn
Download or read book A Classical Invitation to Algebraic Numbers and Class Fields written by Harvey Cohn and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Artin's 1932 Göttingen Lectures on Class Field Theory" and "Connections between Algebrac Number Theory and Integral Matrices"
Book Synopsis Algebraic Function Fields and Codes by : Henning Stichtenoth
Download or read book Algebraic Function Fields and Codes written by Henning Stichtenoth and published by Springer Science & Business Media. This book was released on 2009-02-11 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book links two subjects: algebraic geometry and coding theory. It uses a novel approach based on the theory of algebraic function fields. Coverage includes the Riemann-Rock theorem, zeta functions and Hasse-Weil's theorem as well as Goppa' s algebraic-geometric codes and other traditional codes. It will be useful to researchers in algebraic geometry and coding theory and computer scientists and engineers in information transmission.
Book Synopsis Valued Fields by : Antonio J. Engler
Download or read book Valued Fields written by Antonio J. Engler and published by Springer Science & Business Media. This book was released on 2005-12-28 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: Absolute values and their completions – such as the p-adic number fields – play an important role in number theory. Krull's generalization of absolute values to valuations made possible applications in other branches of mathematics. In valuation theory, the notion of completion must be replaced by that of "Henselization". This book develops the theory of valuations as well as of Henselizations, based on the skills of a standard graduate course in algebra.
Author :Lawrence C. Washington Publisher :Springer Science & Business Media ISBN 13 :1461219345 Total Pages :504 pages Book Rating :4.4/5 (612 download)
Book Synopsis Introduction to Cyclotomic Fields by : Lawrence C. Washington
Download or read book Introduction to Cyclotomic Fields written by Lawrence C. Washington and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text on a central area of number theory covers p-adic L-functions, class numbers, cyclotomic units, Fermat’s Last Theorem, and Iwasawa’s theory of Z_p-extensions. This edition contains a new chapter on the work of Thaine, Kolyvagin, and Rubin, including a proof of the Main Conjecture, as well as a chapter on other recent developments, such as primality testing via Jacobi sums and Sinnott’s proof of the vanishing of Iwasawa’s f-invariant.
Book Synopsis Number Theory and Related Fields by : Jonathan M. Borwein
Download or read book Number Theory and Related Fields written by Jonathan M. Borwein and published by Springer Science & Business Media. This book was released on 2013-05-16 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt: “Number Theory and Related Fields” collects contributions based on the proceedings of the "International Number Theory Conference in Memory of Alf van der Poorten," hosted by CARMA and held March 12-16th 2012 at the University of Newcastle, Australia. The purpose of the conference was to promote number theory research in Australia while commemorating the legacy of Alf van der Poorten, who had written over 170 papers on the topic of number theory and collaborated with dozens of researchers. The research articles and surveys presented in this book were written by some of the most distinguished mathematicians in the field of number theory, and articles will include related topics that focus on the various research interests of Dr. van der Poorten.
Book Synopsis Jacobi Forms, Finite Quadratic Modules and Weil Representations over Number Fields by : Hatice Boylan
Download or read book Jacobi Forms, Finite Quadratic Modules and Weil Representations over Number Fields written by Hatice Boylan and published by Springer. This book was released on 2014-12-05 with total page 150 pages. Available in PDF, EPUB and Kindle. Book excerpt: The new theory of Jacobi forms over totally real number fields introduced in this monograph is expected to give further insight into the arithmetic theory of Hilbert modular forms, its L-series, and into elliptic curves over number fields. This work is inspired by the classical theory of Jacobi forms over the rational numbers, which is an indispensable tool in the arithmetic theory of elliptic modular forms, elliptic curves, and in many other disciplines in mathematics and physics. Jacobi forms can be viewed as vector valued modular forms which take values in so-called Weil representations. Accordingly, the first two chapters develop the theory of finite quadratic modules and associated Weil representations over number fields. This part might also be interesting for those who are merely interested in the representation theory of Hilbert modular groups. One of the main applications is the complete classification of Jacobi forms of singular weight over an arbitrary totally real number field.
Book Synopsis Class Groups of Number Fields and Related Topics by : Kalyan Chakraborty
Download or read book Class Groups of Number Fields and Related Topics written by Kalyan Chakraborty and published by Springer Nature. This book was released on 2020-01-17 with total page 182 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gathers original research papers and survey articles presented at the “International Conference on Class Groups of Number Fields and Related Topics,” held at Harish-Chandra Research Institute, Allahabad, India, on September 4–7, 2017. It discusses the fundamental research problems that arise in the study of class groups of number fields and introduces new techniques and tools to study these problems. Topics in this book include class groups and class numbers of number fields, units, the Kummer–Vandiver conjecture, class number one problem, Diophantine equations, Thue equations, continued fractions, Euclidean number fields, heights, rational torsion points on elliptic curves, cyclotomic numbers, Jacobi sums, and Dedekind zeta values. This book is a valuable resource for undergraduate and graduate students of mathematics as well as researchers interested in class groups of number fields and their connections to other branches of mathematics. New researchers to the field will also benefit immensely from the diverse problems discussed. All the contributing authors are leading academicians, scientists, researchers, and scholars.
Download or read book Skew Fields written by Paul Moritz Cohn and published by Cambridge University Press. This book was released on 1995-07-28 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: Non-commutative fields (also called skew fields or division rings) have not been studied as thoroughly as their commutative counterparts and most accounts have hitherto been confined to division algebras, that is skew fields finite-dimensional over their centre. Based on the author's LMS lecture note volume Skew Field Constructions, the present work offers a comprehensive account of skew fields. The axiomatic foundation and a precise description of the embedding problem are followed by an account of algebraic and topological construction methods, in particular, the author's general embedding theory is presented with full proofs, leading to the construction of skew fields. The powerful coproduct theorems of G. M. Bergman are proved here as well as the properties of the matrix reduction functor, a useful but little-known construction providing a source of examples and counter-examples. The construction and basic properties of existentially closed skew fields are given, leading to an example of a model class with an infinite forcing companion which is not axiomatizable. The treatment of equations over skew fields has been simplified and extended by the use of matrix methods, and the beginnings of non-commutative algebraic geometry are presented, with a precise account of the problems that need to be overcome for a satisfactory theory. A separate chapter describes valuations and orderings on skew fields, with a construction applicable to free fields. Numerous exercises test the reader's understanding, presenting further aspects and open problems in concise form, and notes and comments at the ends of chapters provide historical background.
Book Synopsis Algebraic Extensions of Fields by : Paul J. McCarthy
Download or read book Algebraic Extensions of Fields written by Paul J. McCarthy and published by Courier Corporation. This book was released on 2014-01-07 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graduate-level coverage of Galois theory, especially development of infinite Galois theory; theory of valuations, prolongation of rank-one valuations, more. Over 200 exercises. Bibliography. "...clear, unsophisticated and direct..." — Math.