Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Nonparametric Confidence Bands In Deconvolution Density Estimation
Download Nonparametric Confidence Bands In Deconvolution Density Estimation full books in PDF, epub, and Kindle. Read online Nonparametric Confidence Bands In Deconvolution Density Estimation ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Deconvolution Problems in Nonparametric Statistics by : Alexander Meister
Download or read book Deconvolution Problems in Nonparametric Statistics written by Alexander Meister and published by Springer Science & Business Media. This book was released on 2009-12-24 with total page 211 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deconvolution problems occur in many ?elds of nonparametric statistics, for example, density estimation based on contaminated data, nonparametric - gression with errors-in-variables, image and signal deblurring. During the last two decades, those topics have received more and more attention. As appli- tions of deconvolution procedures concern many real-life problems in eco- metrics, biometrics, medical statistics, image reconstruction, one can realize an increasing number of applied statisticians who are interested in nonpa- metric deconvolution methods; on the other hand, some deep results from Fourier analysis, functional analysis, and probability theory are required to understand the construction of deconvolution techniques and their properties so that deconvolution is also particularly challenging for mathematicians. Thegeneraldeconvolutionprobleminstatisticscanbedescribedasfollows: Our goal is estimating a function f while any empirical access is restricted to some quantity h = f?G = f(x?y)dG(y), (1. 1) that is, the convolution of f and some probability distribution G. Therefore, f can be estimated from some observations only indirectly. The strategy is ˆ estimating h ?rst; this means producing an empirical version h of h and, then, ˆ applying a deconvolution procedure to h to estimate f. In the mathematical context, we have to invert the convolution operator with G where some reg- ˆ ularization is required to guarantee that h is contained in the invertibility ˆ domain of the convolution operator. The estimator h has to be chosen with respect to the speci?c statistical experiment.
Book Synopsis Nonparametric Estimation under Shape Constraints by : Piet Groeneboom
Download or read book Nonparametric Estimation under Shape Constraints written by Piet Groeneboom and published by Cambridge University Press. This book was released on 2014-12-11 with total page 429 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces basic concepts of shape constrained inference and guides the reader to current developments in the subject.
Book Synopsis Nonparametric Functional Estimation and Related Topics by : G.G Roussas
Download or read book Nonparametric Functional Estimation and Related Topics written by G.G Roussas and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 691 pages. Available in PDF, EPUB and Kindle. Book excerpt: About three years ago, an idea was discussed among some colleagues in the Division of Statistics at the University of California, Davis, as to the possibility of holding an international conference, focusing exclusively on nonparametric curve estimation. The fruition of this idea came about with the enthusiastic support of this project by Luc Devroye of McGill University, Canada, and Peter Robinson of the London School of Economics, UK. The response of colleagues, contacted to ascertain interest in participation in such a conference, was gratifying and made the effort involved worthwhile. Devroye and Robinson, together with this editor and George Metakides of the University of Patras, Greece and of the European Economic Communities, Brussels, formed the International Organizing Committee for a two week long Advanced Study Institute (ASI) sponsored by the Scientific Affairs Division of the North Atlantic Treaty Organization (NATO). The ASI was held on the Greek Island of Spetses between July 29 and August 10, 1990. Nonparametric functional estimation is a central topic in statistics, with applications in numerous substantive fields in mathematics, natural and social sciences, engineering and medicine. While there has been interest in nonparametric functional estimation for many years, this has grown of late, owing to increasing availability of large data sets and the ability to process them by means of improved computing facilities, along with the ability to display the results by means of sophisticated graphical procedures.
Book Synopsis Econometric Analysis of Stochastic Dominance by : Yoon-Jae Whang
Download or read book Econometric Analysis of Stochastic Dominance written by Yoon-Jae Whang and published by Cambridge University Press. This book was released on 2019-01-31 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers an up-to-date, comprehensive coverage of stochastic dominance and its related concepts in a unified framework. A method for ordering probability distributions, stochastic dominance has grown in importance recently as a way to measure comparisons in welfare economics, inequality studies, health economics, insurance wages, and trade patterns. Whang pays particular attention to inferential methods and applications, citing and summarizing various empirical studies in order to relate the econometric methods with real applications and using computer codes to enable the practical implementation of these methods. Intuitive explanations throughout the book ensure that readers understand the basic technical tools of stochastic dominance.
Book Synopsis Semiparametric and Nonparametric Methods in Econometrics by : Joel L. Horowitz
Download or read book Semiparametric and Nonparametric Methods in Econometrics written by Joel L. Horowitz and published by Springer Science & Business Media. This book was released on 2010-07-10 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: Standard methods for estimating empirical models in economics and many other fields rely on strong assumptions about functional forms and the distributions of unobserved random variables. Often, it is assumed that functions of interest are linear or that unobserved random variables are normally distributed. Such assumptions simplify estimation and statistical inference but are rarely justified by economic theory or other a priori considerations. Inference based on convenient but incorrect assumptions about functional forms and distributions can be highly misleading. Nonparametric and semiparametric statistical methods provide a way to reduce the strength of the assumptions required for estimation and inference, thereby reducing the opportunities for obtaining misleading results. These methods are applicable to a wide variety of estimation problems in empirical economics and other fields, and they are being used in applied research with increasing frequency. The literature on nonparametric and semiparametric estimation is large and highly technical. This book presents the main ideas underlying a variety of nonparametric and semiparametric methods. It is accessible to graduate students and applied researchers who are familiar with econometric and statistical theory at the level taught in graduate-level courses in leading universities. The book emphasizes ideas instead of technical details and provides as intuitive an exposition as possible. Empirical examples illustrate the methods that are presented. This book updates and greatly expands the author’s previous book on semiparametric methods in econometrics. Nearly half of the material is new.
Book Synopsis Combining, Modelling and Analyzing Imprecision, Randomness and Dependence by : Jonathan Ansari
Download or read book Combining, Modelling and Analyzing Imprecision, Randomness and Dependence written by Jonathan Ansari and published by Springer Nature. This book was released on with total page 579 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Nonparametric Curve Estimation by : Sam Efromovich
Download or read book Nonparametric Curve Estimation written by Sam Efromovich and published by Springer Science & Business Media. This book was released on 2008-01-19 with total page 423 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a systematic, comprehensive, and unified account of modern nonparametric statistics of density estimation, nonparametric regression, filtering signals, and time series analysis. The companion software package, available over the Internet, brings all of the discussed topics into the realm of interactive research. Virtually every claim and development mentioned in the book is illustrated with graphs which are available for the reader to reproduce and modify, making the material fully transparent and allowing for complete interactivity.
Book Synopsis Missing and Modified Data in Nonparametric Estimation by : Sam Efromovich
Download or read book Missing and Modified Data in Nonparametric Estimation written by Sam Efromovich and published by CRC Press. This book was released on 2018-03-12 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a systematic and unified approach for modern nonparametric treatment of missing and modified data via examples of density and hazard rate estimation, nonparametric regression, filtering signals, and time series analysis. All basic types of missing at random and not at random, biasing, truncation, censoring, and measurement errors are discussed, and their treatment is explained. Ten chapters of the book cover basic cases of direct data, biased data, nondestructive and destructive missing, survival data modified by truncation and censoring, missing survival data, stationary and nonstationary time series and processes, and ill-posed modifications. The coverage is suitable for self-study or a one-semester course for graduate students with a prerequisite of a standard course in introductory probability. Exercises of various levels of difficulty will be helpful for the instructor and self-study. The book is primarily about practically important small samples. It explains when consistent estimation is possible, and why in some cases missing data should be ignored and why others must be considered. If missing or data modification makes consistent estimation impossible, then the author explains what type of action is needed to restore the lost information. The book contains more than a hundred figures with simulated data that explain virtually every setting, claim, and development. The companion R software package allows the reader to verify, reproduce and modify every simulation and used estimators. This makes the material fully transparent and allows one to study it interactively. Sam Efromovich is the Endowed Professor of Mathematical Sciences and the Head of the Actuarial Program at the University of Texas at Dallas. He is well known for his work on the theory and application of nonparametric curve estimation and is the author of Nonparametric Curve Estimation: Methods, Theory, and Applications. Professor Sam Efromovich is a Fellow of the Institute of Mathematical Statistics and the American Statistical Association.
Book Synopsis Nonparametric and Dimension Reduction Method for Longitudinal and Survival Data by : Wei Yu
Download or read book Nonparametric and Dimension Reduction Method for Longitudinal and Survival Data written by Wei Yu and published by . This book was released on 2006 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Mathematical Foundations of Infinite-Dimensional Statistical Models by : Evarist Giné
Download or read book Mathematical Foundations of Infinite-Dimensional Statistical Models written by Evarist Giné and published by Cambridge University Press. This book was released on 2021-03-25 with total page 706 pages. Available in PDF, EPUB and Kindle. Book excerpt: In nonparametric and high-dimensional statistical models, the classical Gauss–Fisher–Le Cam theory of the optimality of maximum likelihood estimators and Bayesian posterior inference does not apply, and new foundations and ideas have been developed in the past several decades. This book gives a coherent account of the statistical theory in infinite-dimensional parameter spaces. The mathematical foundations include self-contained 'mini-courses' on the theory of Gaussian and empirical processes, approximation and wavelet theory, and the basic theory of function spaces. The theory of statistical inference in such models - hypothesis testing, estimation and confidence sets - is presented within the minimax paradigm of decision theory. This includes the basic theory of convolution kernel and projection estimation, but also Bayesian nonparametrics and nonparametric maximum likelihood estimation. In a final chapter the theory of adaptive inference in nonparametric models is developed, including Lepski's method, wavelet thresholding, and adaptive inference for self-similar functions. Winner of the 2017 PROSE Award for Mathematics.
Book Synopsis All of Nonparametric Statistics by : Larry Wasserman
Download or read book All of Nonparametric Statistics written by Larry Wasserman and published by Springer Science & Business Media. This book was released on 2006-09-10 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text provides the reader with a single book where they can find accounts of a number of up-to-date issues in nonparametric inference. The book is aimed at Masters or PhD level students in statistics, computer science, and engineering. It is also suitable for researchers who want to get up to speed quickly on modern nonparametric methods. It covers a wide range of topics including the bootstrap, the nonparametric delta method, nonparametric regression, density estimation, orthogonal function methods, minimax estimation, nonparametric confidence sets, and wavelets. The book’s dual approach includes a mixture of methodology and theory.
Book Synopsis Handbook of Measurement Error Models by : Grace Y. Yi
Download or read book Handbook of Measurement Error Models written by Grace Y. Yi and published by CRC Press. This book was released on 2021-09-28 with total page 648 pages. Available in PDF, EPUB and Kindle. Book excerpt: Measurement error arises ubiquitously in applications and has been of long-standing concern in a variety of fields, including medical research, epidemiological studies, economics, environmental studies, and survey research. While several research monographs are available to summarize methods and strategies of handling different measurement error problems, research in this area continues to attract extensive attention. The Handbook of Measurement Error Models provides overviews of various topics on measurement error problems. It collects carefully edited chapters concerning issues of measurement error and evolving statistical methods, with a good balance of methodology and applications. It is prepared for readers who wish to start research and gain insights into challenges, methods, and applications related to error-prone data. It also serves as a reference text on statistical methods and applications pertinent to measurement error models, for researchers and data analysts alike. Features: Provides an account of past development and modern advancement concerning measurement error problems Highlights the challenges induced by error-contaminated data Introduces off-the-shelf methods for mitigating deleterious impacts of measurement error Describes state-of-the-art strategies for conducting in-depth research
Book Synopsis Asymptotic Theory of Statistics and Probability by : Anirban DasGupta
Download or read book Asymptotic Theory of Statistics and Probability written by Anirban DasGupta and published by Springer Science & Business Media. This book was released on 2008-02-06 with total page 727 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique book delivers an encyclopedic treatment of classic as well as contemporary large sample theory, dealing with both statistical problems and probabilistic issues and tools. The book is unique in its detailed coverage of fundamental topics. It is written in an extremely lucid style, with an emphasis on the conceptual discussion of the importance of a problem and the impact and relevance of the theorems. There is no other book in large sample theory that matches this book in coverage, exercises and examples, bibliography, and lucid conceptual discussion of issues and theorems.
Book Synopsis Journal of the American Statistical Association by :
Download or read book Journal of the American Statistical Association written by and published by . This book was released on 2009 with total page 898 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Nonparametric Functional Estimation and Related Topics by : George Roussas
Download or read book Nonparametric Functional Estimation and Related Topics written by George Roussas and published by Springer Science & Business Media. This book was released on 1991-04-30 with total page 732 pages. Available in PDF, EPUB and Kindle. Book excerpt: About three years ago, an idea was discussed among some colleagues in the Division of Statistics at the University of California, Davis, as to the possibility of holding an international conference, focusing exclusively on nonparametric curve estimation. The fruition of this idea came about with the enthusiastic support of this project by Luc Devroye of McGill University, Canada, and Peter Robinson of the London School of Economics, UK. The response of colleagues, contacted to ascertain interest in participation in such a conference, was gratifying and made the effort involved worthwhile. Devroye and Robinson, together with this editor and George Metakides of the University of Patras, Greece and of the European Economic Communities, Brussels, formed the International Organizing Committee for a two week long Advanced Study Institute (ASI) sponsored by the Scientific Affairs Division of the North Atlantic Treaty Organization (NATO). The ASI was held on the Greek Island of Spetses between July 29 and August 10, 1990. Nonparametric functional estimation is a central topic in statistics, with applications in numerous substantive fields in mathematics, natural and social sciences, engineering and medicine. While there has been interest in nonparametric functional estimation for many years, this has grown of late, owing to increasing availability of large data sets and the ability to process them by means of improved computing facilities, along with the ability to display the results by means of sophisticated graphical procedures.
Book Synopsis Statistical Tools for Epidemiologic Research by : Steve Selvin
Download or read book Statistical Tools for Epidemiologic Research written by Steve Selvin and published by Oxford University Press. This book was released on 2011-01-14 with total page 511 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this innovative new book, Steve Selvin provides readers with a clear understanding of intermediate biostatistical methods without advanced mathematics or statistical theory (for example, no Bayesian statistics, no causal inference, no linear algebra and only a slight hint of calculus). This text answers the important question: After a typical first-year course in statistical methods, what next? Statistical Tools for Epidemiologic Research thoroughly explains not just how statistical data analysis works, but how the analysis is accomplished. From the basic foundation laid in the introduction, chapters gradually increase in sophistication with particular emphasis on regression techniques (logistic, Poisson, conditional logistic and log-linear) and then beyond to useful techniques that are not typically discussed in an applied context. Intuitive explanations richly supported with numerous examples produce an accessible presentation for readers interested in the analysis of data relevant to epidemiologic or medical research.
Book Synopsis Statistics in the Health Sciences by : Albert Vexler
Download or read book Statistics in the Health Sciences written by Albert Vexler and published by CRC Press. This book was released on 2018-01-19 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This very informative book introduces classical and novel statistical methods that can be used by theoretical and applied biostatisticians to develop efficient solutions for real-world problems encountered in clinical trials and epidemiological studies. The authors provide a detailed discussion of methodological and applied issues in parametric, semi-parametric and nonparametric approaches, including computationally extensive data-driven techniques, such as empirical likelihood, sequential procedures, and bootstrap methods. Many of these techniques are implemented using popular software such as R and SAS."— Vlad Dragalin, Professor, Johnson and Johnson, Spring House, PA "It is always a pleasure to come across a new book that covers nearly all facets of a branch of science one thought was so broad, so diverse, and so dynamic that no single book could possibly hope to capture all of the fundamentals as well as directions of the field. The topics within the book’s purview—fundamentals of measure-theoretic probability; parametric and non-parametric statistical inference; central limit theorems; basics of martingale theory; Monte Carlo methods; sequential analysis; sequential change-point detection—are all covered with inspiring clarity and precision. The authors are also very thorough and avail themselves of the most recent scholarship. They provide a detailed account of the state of the art, and bring together results that were previously scattered across disparate disciplines. This makes the book more than just a textbook: it is a panoramic companion to the field of Biostatistics. The book is self-contained, and the concise but careful exposition of material makes it accessible to a wide audience. This is appealing to graduate students interested in getting into the field, and also to professors looking to design a course on the subject." — Aleksey S. Polunchenko, Department of Mathematical Sciences, State University of New York at Binghamton This book should be appropriate for use both as a text and as a reference. This book delivers a "ready-to-go" well-structured product to be employed in developing advanced courses. In this book the readers can find classical and new theoretical methods, open problems and new procedures. The book presents biostatistical results that are novel to the current set of books on the market and results that are even new with respect to the modern scientific literature. Several of these results can be found only in this book.