Nonlinear Potential Theory on Metric Spaces

Download Nonlinear Potential Theory on Metric Spaces PDF Online Free

Author :
Publisher : European Mathematical Society
ISBN 13 : 9783037190999
Total Pages : 422 pages
Book Rating : 4.1/5 (99 download)

DOWNLOAD NOW!


Book Synopsis Nonlinear Potential Theory on Metric Spaces by : Anders Björn

Download or read book Nonlinear Potential Theory on Metric Spaces written by Anders Björn and published by European Mathematical Society. This book was released on 2011 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt: The $p$-Laplace equation is the main prototype for nonlinear elliptic problems and forms a basis for various applications, such as injection moulding of plastics, nonlinear elasticity theory, and image processing. Its solutions, called p-harmonic functions, have been studied in various contexts since the 1960s, first on Euclidean spaces and later on Riemannian manifolds, graphs, and Heisenberg groups. Nonlinear potential theory of p-harmonic functions on metric spaces has been developing since the 1990s and generalizes and unites these earlier theories. This monograph gives a unified treatment of the subject and covers most of the available results in the field, so far scattered over a large number of research papers. The aim is to serve both as an introduction to the area for interested readers and as a reference text for active researchers. The presentation is rather self contained, but it is assumed that readers know measure theory and functional analysis. The first half of the book deals with Sobolev type spaces, so-called Newtonian spaces, based on upper gradients on general metric spaces. In the second half, these spaces are used to study p-harmonic functions on metric spaces, and a nonlinear potential theory is developed under some additional, but natural, assumptions on the underlying metric space. Each chapter contains historical notes with relevant references, and an extensive index is provided at the end of the book.

Nonlinear Potential Theory on Metric Spaces

Download Nonlinear Potential Theory on Metric Spaces PDF Online Free

Author :
Publisher :
ISBN 13 : 9789513932695
Total Pages : 98 pages
Book Rating : 4.9/5 (326 download)

DOWNLOAD NOW!


Book Synopsis Nonlinear Potential Theory on Metric Spaces by : Tero Mäkäläinen

Download or read book Nonlinear Potential Theory on Metric Spaces written by Tero Mäkäläinen and published by . This book was released on 2008 with total page 98 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Function Spaces and Potential Theory

Download Function Spaces and Potential Theory PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3662032821
Total Pages : 372 pages
Book Rating : 4.6/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Function Spaces and Potential Theory by : David R. Adams

Download or read book Function Spaces and Potential Theory written by David R. Adams and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: "..carefully and thoughtfully written and prepared with, in my opinion, just the right amount of detail included...will certainly be a primary source that I shall turn to." Proceedings of the Edinburgh Mathematical Society

Topics In Mathematical Analysis

Download Topics In Mathematical Analysis PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9814471356
Total Pages : 460 pages
Book Rating : 4.8/5 (144 download)

DOWNLOAD NOW!


Book Synopsis Topics In Mathematical Analysis by : Paolo Ciatti

Download or read book Topics In Mathematical Analysis written by Paolo Ciatti and published by World Scientific. This book was released on 2008-06-16 with total page 460 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume consists of a series of lecture notes on mathematical analysis. The contributors have been selected on the basis of both their outstanding scientific level and their clarity of exposition. Thus, the present collection is particularly suited to young researchers and graduate students. Through this volume, the editors intend to provide the reader with material otherwise difficult to find and written in a manner which is also accessible to nonexperts.

Nonlinear Potential Theory of Degenerate Elliptic Equations

Download Nonlinear Potential Theory of Degenerate Elliptic Equations PDF Online Free

Author :
Publisher : Courier Dover Publications
ISBN 13 : 048682425X
Total Pages : 417 pages
Book Rating : 4.4/5 (868 download)

DOWNLOAD NOW!


Book Synopsis Nonlinear Potential Theory of Degenerate Elliptic Equations by : Juha Heinonen

Download or read book Nonlinear Potential Theory of Degenerate Elliptic Equations written by Juha Heinonen and published by Courier Dover Publications. This book was released on 2018-05-16 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: A self-contained treatment appropriate for advanced undergraduate and graduate students, this volume offers a detailed development of the necessary background for its survey of the nonlinear potential theory of superharmonic functions. Starting with the theory of weighted Sobolev spaces, the text advances to the theory of weighted variational capacity. Succeeding chapters investigate solutions and supersolutions of equations, with emphasis on refined Sobolev spaces, variational integrals, and harmonic functions. Chapter 7 defines superharmonic functions via the comparison principle, and chapters 8 through 14 form the core of the nonlinear potential theory of superharmonic functions. Topics include balayage; Perron's method, barriers, and resolutivity; polar sets; harmonic measure; fine topology; harmonic morphisms; and quasiregular mappings. The book concludes with explorations of axiomatic nonlinear potential theory and helpful appendixes.

Sobolev Spaces on Metric Measure Spaces

Download Sobolev Spaces on Metric Measure Spaces PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1316241033
Total Pages : 447 pages
Book Rating : 4.3/5 (162 download)

DOWNLOAD NOW!


Book Synopsis Sobolev Spaces on Metric Measure Spaces by : Juha Heinonen

Download or read book Sobolev Spaces on Metric Measure Spaces written by Juha Heinonen and published by Cambridge University Press. This book was released on 2015-02-05 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: Analysis on metric spaces emerged in the 1990s as an independent research field providing a unified treatment of first-order analysis in diverse and potentially nonsmooth settings. Based on the fundamental concept of upper gradient, the notion of a Sobolev function was formulated in the setting of metric measure spaces supporting a Poincaré inequality. This coherent treatment from first principles is an ideal introduction to the subject for graduate students and a useful reference for experts. It presents the foundations of the theory of such first-order Sobolev spaces, then explores geometric implications of the critical Poincaré inequality, and indicates numerous examples of spaces satisfying this axiom. A distinguishing feature of the book is its focus on vector-valued Sobolev spaces. The final chapters include proofs of several landmark theorems, including Cheeger's stability theorem for Poincaré inequalities under Gromov–Hausdorff convergence, and the Keith–Zhong self-improvement theorem for Poincaré inequalities.

Morrey Spaces

Download Morrey Spaces PDF Online Free

Author :
Publisher : Birkhäuser
ISBN 13 : 3319266810
Total Pages : 133 pages
Book Rating : 4.3/5 (192 download)

DOWNLOAD NOW!


Book Synopsis Morrey Spaces by : David Adams

Download or read book Morrey Spaces written by David Adams and published by Birkhäuser. This book was released on 2015-12-31 with total page 133 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this set of lecture notes, the author includes some of the latest research on the theory of Morrey Spaces associated with Harmonic Analysis. There are three main claims concerning these spaces that are covered: determining the integrability classes of the trace of Riesz potentials of an arbitrary Morrey function; determining the dimensions of singular sets of weak solutions of PDE (e.g. The Meyers-Elcart System); and determining whether there are any “full” interpolation results for linear operators between Morrey spaces. This book will serve as a useful reference to graduate students and researchers interested in Potential Theory, Harmonic Analysis, PDE, and/or Morrey Space Theory.

Nonlinear Potential Theory and Weighted Sobolev Spaces

Download Nonlinear Potential Theory and Weighted Sobolev Spaces PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540451684
Total Pages : 188 pages
Book Rating : 4.5/5 (44 download)

DOWNLOAD NOW!


Book Synopsis Nonlinear Potential Theory and Weighted Sobolev Spaces by : Bengt O. Turesson

Download or read book Nonlinear Potential Theory and Weighted Sobolev Spaces written by Bengt O. Turesson and published by Springer. This book was released on 2007-05-06 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book systematically develops the nonlinear potential theory connected with the weighted Sobolev spaces, where the weight usually belongs to Muckenhoupt's class of Ap weights. These spaces occur as solutions spaces for degenerate elliptic partial differential equations. The Sobolev space theory covers results concerning approximation, extension, and interpolation, Sobolev and Poincaré inequalities, Maz'ya type embedding theorems, and isoperimetric inequalities. In the chapter devoted to potential theory, several weighted capacities are investigated. Moreover, "Kellogg lemmas" are established for various concepts of thinness. Applications of potential theory to weighted Sobolev spaces include quasi continuity of Sobolev functions, Poincaré inequalities, and spectral synthesis theorems.

Integral Operators in Non-Standard Function Spaces

Download Integral Operators in Non-Standard Function Spaces PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031649834
Total Pages : 519 pages
Book Rating : 4.0/5 (316 download)

DOWNLOAD NOW!


Book Synopsis Integral Operators in Non-Standard Function Spaces by : Vakhtang Kokilashvili

Download or read book Integral Operators in Non-Standard Function Spaces written by Vakhtang Kokilashvili and published by Springer Nature. This book was released on with total page 519 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Potential Theory in Matsue

Download Potential Theory in Matsue PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 442 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Potential Theory in Matsue by : Hiroaki Aikawa

Download or read book Potential Theory in Matsue written by Hiroaki Aikawa and published by . This book was released on 2006 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume collects, in written form, eight plenary lectures and twenty-five selected contributions from invited and contributed lectures delivered at the International Workshop on Potential Theory 2004. The workshop was held at Shimane University, Matsue, Japan, from 23 to 28 August, 2004. The topic of the workshop was Potential Theory and its related fields. There were stimulus talks from classical potential theory to pluri-potential theory and probabilistic potential theory.Published by Mathematical Society of Japan and distributed by World Scientific Publishing Co. for all markets except North America

Lectures on Analysis on Metric Spaces

Download Lectures on Analysis on Metric Spaces PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461301319
Total Pages : 149 pages
Book Rating : 4.4/5 (613 download)

DOWNLOAD NOW!


Book Synopsis Lectures on Analysis on Metric Spaces by : Juha Heinonen

Download or read book Lectures on Analysis on Metric Spaces written by Juha Heinonen and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 149 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this book is to communicate some of the recent advances in this field while preparing the reader for more advanced study. The material can be roughly divided into three different types: classical, standard but sometimes with a new twist, and recent. The author first studies basic covering theorems and their applications to analysis in metric measure spaces. This is followed by a discussion on Sobolev spaces emphasizing principles that are valid in larger contexts. The last few sections of the book present a basic theory of quasisymmetric maps between metric spaces. Much of the material is recent and appears for the first time in book format.

Nonsmooth Differential Geometry-An Approach Tailored for Spaces with Ricci Curvature Bounded from Below

Download Nonsmooth Differential Geometry-An Approach Tailored for Spaces with Ricci Curvature Bounded from Below PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470427656
Total Pages : 174 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Nonsmooth Differential Geometry-An Approach Tailored for Spaces with Ricci Curvature Bounded from Below by : Nicola Gigli

Download or read book Nonsmooth Differential Geometry-An Approach Tailored for Spaces with Ricci Curvature Bounded from Below written by Nicola Gigli and published by American Mathematical Soc.. This book was released on 2018-02-23 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt: The author discusses in which sense general metric measure spaces possess a first order differential structure. Building on this, spaces with Ricci curvature bounded from below a second order calculus can be developed, permitting the author to define Hessian, covariant/exterior derivatives and Ricci curvature.

Sobolev Spaces on Metric Measure Spaces

Download Sobolev Spaces on Metric Measure Spaces PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107092345
Total Pages : 447 pages
Book Rating : 4.1/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Sobolev Spaces on Metric Measure Spaces by : Juha Heinonen

Download or read book Sobolev Spaces on Metric Measure Spaces written by Juha Heinonen and published by Cambridge University Press. This book was released on 2015-02-05 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: This coherent treatment from first principles is an ideal introduction for graduate students and a useful reference for experts.

Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces

Download Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821833839
Total Pages : 434 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces by : Pascal Auscher

Download or read book Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces written by Pascal Auscher and published by American Mathematical Soc.. This book was released on 2003 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the expanded lecture notes of courses taught at the Emile Borel Centre of the Henri Poincare Institute (Paris). In the book, leading experts introduce recent research in their fields. The unifying theme is the study of heat kernels in various situations using related geometric and analytic tools. Topics include analysis of complex-coefficient elliptic operators, diffusions on fractals and on infinite-dimensional groups, heat kernel and isoperimetry on Riemannian manifolds, heat kernels and infinite dimensional analysis, diffusions and Sobolev-type spaces on metric spaces, quasi-regular mappings and $p$-Laplace operators, heat kernel and spherical inversion on $SL 2(C)$, random walks and spectral geometry on crystal lattices, isoperimetric and isocapacitary inequalities, and generating function techniques for random walks on graphs. This volume is suitable for graduate students and research mathematicians interested in random processes and analysis on manifolds.

Maximal Function Methods for Sobolev Spaces

Download Maximal Function Methods for Sobolev Spaces PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470465752
Total Pages : 354 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Maximal Function Methods for Sobolev Spaces by : Juha Kinnunen

Download or read book Maximal Function Methods for Sobolev Spaces written by Juha Kinnunen and published by American Mathematical Soc.. This book was released on 2021-08-02 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses advances in maximal function methods related to Poincaré and Sobolev inequalities, pointwise estimates and approximation for Sobolev functions, Hardy's inequalities, and partial differential equations. Capacities are needed for fine properties of Sobolev functions and characterization of Sobolev spaces with zero boundary values. The authors consider several uniform quantitative conditions that are self-improving, such as Hardy's inequalities, capacity density conditions, and reverse Hölder inequalities. They also study Muckenhoupt weight properties of distance functions and combine these with weighted norm inequalities; notions of dimension are then used to characterize density conditions and to give sufficient and necessary conditions for Hardy's inequalities. At the end of the book, the theory of weak solutions to the p p-Laplace equation and the use of maximal function techniques is this context are discussed. The book is directed to researchers and graduate students interested in applications of geometric and harmonic analysis in Sobolev spaces and partial differential equations.

On the Differential Structure of Metric Measure Spaces and Applications

Download On the Differential Structure of Metric Measure Spaces and Applications PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470414201
Total Pages : 104 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis On the Differential Structure of Metric Measure Spaces and Applications by : Nicola Gigli

Download or read book On the Differential Structure of Metric Measure Spaces and Applications written by Nicola Gigli and published by American Mathematical Soc.. This book was released on 2015-06-26 with total page 104 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main goals of this paper are: (i) To develop an abstract differential calculus on metric measure spaces by investigating the duality relations between differentials and gradients of Sobolev functions. This will be achieved without calling into play any sort of analysis in charts, our assumptions being: the metric space is complete and separable and the measure is Radon and non-negative. (ii) To employ these notions of calculus to provide, via integration by parts, a general definition of distributional Laplacian, thus giving a meaning to an expression like , where is a function and is a measure. (iii) To show that on spaces with Ricci curvature bounded from below and dimension bounded from above, the Laplacian of the distance function is always a measure and that this measure has the standard sharp comparison properties. This result requires an additional assumption on the space, which reduces to strict convexity of the norm in the case of smooth Finsler structures and is always satisfied on spaces with linear Laplacian, a situation which is analyzed in detail.

Analysis, Probability And Mathematical Physics On Fractals

Download Analysis, Probability And Mathematical Physics On Fractals PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9811215545
Total Pages : 594 pages
Book Rating : 4.8/5 (112 download)

DOWNLOAD NOW!


Book Synopsis Analysis, Probability And Mathematical Physics On Fractals by : Patricia Alonso Ruiz

Download or read book Analysis, Probability And Mathematical Physics On Fractals written by Patricia Alonso Ruiz and published by World Scientific. This book was released on 2020-02-26 with total page 594 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the 50 years since Mandelbrot identified the fractality of coastlines, mathematicians and physicists have developed a rich and beautiful theory describing the interplay between analytic, geometric and probabilistic aspects of the mathematics of fractals. Using classical and abstract analytic tools developed by Cantor, Hausdorff, and Sierpinski, they have sought to address fundamental questions: How can we measure the size of a fractal set? How do waves and heat travel on irregular structures? How are analysis, geometry and stochastic processes related in the absence of Euclidean smooth structure? What new physical phenomena arise in the fractal-like settings that are ubiquitous in nature?This book introduces background and recent progress on these problems, from both established leaders in the field and early career researchers. The book gives a broad introduction to several foundational techniques in fractal mathematics, while also introducing some specific new and significant results of interest to experts, such as that waves have infinite propagation speed on fractals. It contains sufficient introductory material that it can be read by new researchers or researchers from other areas who want to learn about fractal methods and results.