Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Nonlinear Differential Forms
Download Nonlinear Differential Forms full books in PDF, epub, and Kindle. Read online Nonlinear Differential Forms ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis The Pullback Equation for Differential Forms by : Gyula Csató
Download or read book The Pullback Equation for Differential Forms written by Gyula Csató and published by Springer Science & Business Media. This book was released on 2011-11-12 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: An important question in geometry and analysis is to know when two k-forms f and g are equivalent through a change of variables. The problem is therefore to find a map φ so that it satisfies the pullback equation: φ*(g) = f. In more physical terms, the question under consideration can be seen as a problem of mass transportation. The problem has received considerable attention in the cases k = 2 and k = n, but much less when 3 ≤ k ≤ n–1. The present monograph provides the first comprehensive study of the equation. The work begins by recounting various properties of exterior forms and differential forms that prove useful throughout the book. From there it goes on to present the classical Hodge–Morrey decomposition and to give several versions of the Poincaré lemma. The core of the book discusses the case k = n, and then the case 1≤ k ≤ n–1 with special attention on the case k = 2, which is fundamental in symplectic geometry. Special emphasis is given to optimal regularity, global results and boundary data. The last part of the work discusses Hölder spaces in detail; all the results presented here are essentially classical, but cannot be found in a single book. This section may serve as a reference on Hölder spaces and therefore will be useful to mathematicians well beyond those who are only interested in the pullback equation. The Pullback Equation for Differential Forms is a self-contained and concise monograph intended for both geometers and analysts. The book may serve as a valuable reference for researchers or a supplemental text for graduate courses or seminars.
Book Synopsis A Geometric Approach to Differential Forms by : David Bachman
Download or read book A Geometric Approach to Differential Forms written by David Bachman and published by Springer Science & Business Media. This book was released on 2012-02-02 with total page 167 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text presents differential forms from a geometric perspective accessible at the undergraduate level. It begins with basic concepts such as partial differentiation and multiple integration and gently develops the entire machinery of differential forms. The subject is approached with the idea that complex concepts can be built up by analogy from simpler cases, which, being inherently geometric, often can be best understood visually. Each new concept is presented with a natural picture that students can easily grasp. Algebraic properties then follow. The book contains excellent motivation, numerous illustrations and solutions to selected problems.
Book Synopsis Nonlinear Differential Equations and Dynamical Systems by : Ferdinand Verhulst
Download or read book Nonlinear Differential Equations and Dynamical Systems written by Ferdinand Verhulst and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 287 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bridging the gap between elementary courses and the research literature in this field, the book covers the basic concepts necessary to study differential equations. Stability theory is developed, starting with linearisation methods going back to Lyapunov and Poincaré, before moving on to the global direct method. The Poincaré-Lindstedt method is introduced to approximate periodic solutions, while at the same time proving existence by the implicit function theorem. The final part covers relaxation oscillations, bifurcation theory, centre manifolds, chaos in mappings and differential equations, and Hamiltonian systems. The subject material is presented from both the qualitative and the quantitative point of view, with many examples to illustrate the theory, enabling the reader to begin research after studying this book.
Book Synopsis Contact Geometry and Nonlinear Differential Equations by : Alexei Kushner
Download or read book Contact Geometry and Nonlinear Differential Equations written by Alexei Kushner and published by Cambridge University Press. This book was released on 2007 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: Shows novel and modern ways of solving differential equations using methods from contact and symplectic geometry.
Book Synopsis Introduction to Nonlinear Differential and Integral Equations by : Harold Thayer Davis
Download or read book Introduction to Nonlinear Differential and Integral Equations written by Harold Thayer Davis and published by . This book was released on 1960 with total page 590 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Tensors, Differential Forms, and Variational Principles by : David Lovelock
Download or read book Tensors, Differential Forms, and Variational Principles written by David Lovelock and published by Courier Corporation. This book was released on 2012-04-20 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Incisive, self-contained account of tensor analysis and the calculus of exterior differential forms, interaction between the concept of invariance and the calculus of variations. Emphasis is on analytical techniques. Includes problems.
Book Synopsis Electricity and Magnetism for Mathematicians by : Thomas A. Garrity
Download or read book Electricity and Magnetism for Mathematicians written by Thomas A. Garrity and published by Cambridge University Press. This book was released on 2015-01-19 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: Maxwell's equations have led to many important mathematical discoveries. This text introduces mathematics students to some of their wonders.
Book Synopsis Nonlinear Partial Differential Equations with Applications by : Tomás Roubicek
Download or read book Nonlinear Partial Differential Equations with Applications written by Tomás Roubicek and published by Springer Science & Business Media. This book was released on 2006-01-17 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book primarily concerns quasilinear and semilinear elliptic and parabolic partial differential equations, inequalities, and systems. The exposition quickly leads general theory to analysis of concrete equations, which have specific applications in such areas as electrically (semi-) conductive media, modeling of biological systems, and mechanical engineering. Methods of Galerkin or of Rothe are exposed in a large generality.
Book Synopsis Applied Differential Geometry by : William L. Burke
Download or read book Applied Differential Geometry written by William L. Burke and published by Cambridge University Press. This book was released on 1985-05-31 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a self-contained introductory textbook on the calculus of differential forms and modern differential geometry. The intended audience is physicists, so the author emphasises applications and geometrical reasoning in order to give results and concepts a precise but intuitive meaning without getting bogged down in analysis. The large number of diagrams helps elucidate the fundamental ideas. Mathematical topics covered include differentiable manifolds, differential forms and twisted forms, the Hodge star operator, exterior differential systems and symplectic geometry. All of the mathematics is motivated and illustrated by useful physical examples.
Book Synopsis Handbook of Nonlinear Partial Differential Equations by : Andrei D. Polyanin
Download or read book Handbook of Nonlinear Partial Differential Equations written by Andrei D. Polyanin and published by CRC Press. This book was released on 2004-06-02 with total page 835 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook of Nonlinear Partial Differential Equations is the latest in a series of acclaimed handbooks by these authors and presents exact solutions of more than 1600 nonlinear equations encountered in science and engineering--many more than any other book available. The equations include those of parabolic, hyperbolic, elliptic and other types, and the authors pay special attention to equations of general form that involve arbitrary functions. A supplement at the end of the book discusses the classical and new methods for constructing exact solutions to nonlinear equations. To accommodate different mathematical backgrounds, the authors avoid wherever possible the use of special terminology, outline some of the methods in a schematic, simplified manner, and arrange the equations in increasing order of complexity. Highlights of the Handbook:
Book Synopsis Nonlinear Differential Equations of Chemically Reacting Systems by : George R. Gavalas
Download or read book Nonlinear Differential Equations of Chemically Reacting Systems written by George R. Gavalas and published by Springer Science & Business Media. This book was released on 2013-03-13 with total page 116 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years considerable interest has developed in the mathe matical analysis of chemically reacting systems both in the absence and in the presence of diffusion. Earlier work has been limited to simple problems amenable to closed form solutions, but now the computer permits the numerical solution of complex systems of nonlinear differ ential equations. The numerical approach provides quantitative infor mation, but for practical reasons it must be limited to a rather narrow range of the parameters of the problem. Consequently, it is desirable to obtain broader qualitative information about the solutions by in vestigating from a more fundamental mathematical point of view the structure of the differential equations. This theoretical approach can actually complement and guide the computational approach by narrow ing down trial and error procedures, pinpointing singularities and suggesting methods for handling them. The study of the structure of the differential equations may also clarify some physical principles and suggest new experiments. A serious limitation ofthe theoretical approach is that many of the results obtained, such as the sufficient conditions for the stability of the steady state, turn out to be very conservative. Thus the theoretical and computational approaches are best used to gether for the purpose of understanding, designing, and controlling chemically reacting systems. The present monograph is intended as a contribution to the theory of the differential equations describing chemically reacting systems.
Book Synopsis Nonlinear Partial Differential Equations with Applications by : Tomáš Roubíček
Download or read book Nonlinear Partial Differential Equations with Applications written by Tomáš Roubíček and published by Springer Science & Business Media. This book was released on 2013-01-13 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book primarily concerns quasilinear and semilinear elliptic and parabolic partial differential equations, inequalities, and systems. The exposition leads the reader through the general theory based on abstract (pseudo-) monotone or accretive operators as fast as possible towards the analysis of concrete differential equations, which have specific applications in continuum (thermo-) mechanics of solids and fluids, electrically (semi-) conductive media, modelling of biological systems, or in mechanical engineering. Selected parts are mainly an introduction into the subject while some others form an advanced textbook. The second edition simplifies and extends the exposition at particular spots and augments the applications especially towards thermally coupled systems, magnetism, and more. The intended audience is graduate and PhD students as well as researchers in the theory of partial differential equations or in mathematical modelling of distributed parameter systems. ------ The monograph contains a wealth of material in both the abstract theory of steady-state or evolution equations of monotone and accretive type and concrete applications to nonlinear partial differential equations from mathematical modeling. The organization of the material is well done, and the presentation, although concise, is clear, elegant and rigorous. (...) this book is a notable addition to the existing literature. Also, it certainly will prove useful to engineers, physicists, biologists and other scientists interested in the analysis of (...) nonlinear differential models of the real world. (Mathematical Reviews)
Book Synopsis Nonlinear Methods in Riemannian and Kählerian Geometry by : J. Jost
Download or read book Nonlinear Methods in Riemannian and Kählerian Geometry written by J. Jost and published by Birkhäuser. This book was released on 2013-04-17 with total page 153 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, I present an expanded version of the contents of my lectures at a Seminar of the DMV (Deutsche Mathematiker Vereinigung) in Diisseldorf, June, 1986. The title "Nonlinear methods in complex geometry" already indicates a combination of techniques from nonlinear partial differential equations and geometric concepts. In older geometric investigations, usually the local aspects attracted more attention than the global ones as differential geometry in its foundations provides approximations of local phenomena through infinitesimal or differential constructions. Here, all equations are linear. If one wants to consider global aspects, however, usually the presence of curvature leads to a nonlinearity in the equations. The simplest case is the one of geodesics which are described by a system of second order nonlinear ODE; their linearizations are the Jacobi fields. More recently, nonlinear PDE played a more and more prominent role in geometry. Let us list some of the most important ones: - harmonic maps between Riemannian and Kahlerian manifolds - minimal surfaces in Riemannian manifolds - Monge-Ampere equations on Kahler manifolds - Yang-Mills equations in vector bundles over manifolds. While the solution of these equations usually is nontrivial, it can lead to very signifi cant results in geometry, as solutions provide maps, submanifolds, metrics, or connections which are distinguished by geometric properties in a given context. All these equations are elliptic, but often parabolic equations are used as an auxiliary tool to solve the elliptic ones.
Book Synopsis Nonlinear Ordinary Differential Equations by : R. Grimshaw
Download or read book Nonlinear Ordinary Differential Equations written by R. Grimshaw and published by Routledge. This book was released on 2017-10-19 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ordinary differential equations have long been an important area of study because of their wide application in physics, engineering, biology, chemistry, ecology, and economics. Based on a series of lectures given at the Universities of Melbourne and New South Wales in Australia, Nonlinear Ordinary Differential Equations takes the reader from basic elementary notions to the point where the exciting and fascinating developments in the theory of nonlinear differential equations can be understood and appreciated. Each chapter is self-contained, and includes a selection of problems together with some detailed workings within the main text. Nonlinear Ordinary Differential Equations helps develop an understanding of the subtle and sometimes unexpected properties of nonlinear systems and simultaneously introduces practical analytical techniques to analyze nonlinear phenomena. This excellent book gives a structured, systematic, and rigorous development of the basic theory from elementary concepts to a point where readers can utilize ideas in nonlinear differential equations.
Book Synopsis Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields by : John Guckenheimer
Download or read book Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields written by John Guckenheimer and published by Springer Science & Business Media. This book was released on 2013-11-21 with total page 475 pages. Available in PDF, EPUB and Kindle. Book excerpt: An application of the techniques of dynamical systems and bifurcation theories to the study of nonlinear oscillations. Taking their cue from Poincare, the authors stress the geometrical and topological properties of solutions of differential equations and iterated maps. Numerous exercises, some of which require nontrivial algebraic manipulations and computer work, convey the important analytical underpinnings of problems in dynamical systems and help readers develop an intuitive feel for the properties involved.
Book Synopsis Differential Geometry Applied To Dynamical Systems (With Cd-rom) by : Jean-marc Ginoux
Download or read book Differential Geometry Applied To Dynamical Systems (With Cd-rom) written by Jean-marc Ginoux and published by World Scientific. This book was released on 2009-04-03 with total page 341 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book aims to present a new approach called Flow Curvature Method that applies Differential Geometry to Dynamical Systems. Hence, for a trajectory curve, an integral of any n-dimensional dynamical system as a curve in Euclidean n-space, the curvature of the trajectory — or the flow — may be analytically computed. Then, the location of the points where the curvature of the flow vanishes defines a manifold called flow curvature manifold. Such a manifold being defined from the time derivatives of the velocity vector field, contains information about the dynamics of the system, hence identifying the main features of the system such as fixed points and their stability, local bifurcations of codimension one, center manifold equation, normal forms, linear invariant manifolds (straight lines, planes, hyperplanes).In the case of singularly perturbed systems or slow-fast dynamical systems, the flow curvature manifold directly provides the slow invariant manifold analytical equation associated with such systems. Also, starting from the flow curvature manifold, it will be demonstrated how to find again the corresponding dynamical system, thus solving the inverse problem.
Book Synopsis International Symposium on Nonlinear Differential Equations and Nonlinear Mechanics by :
Download or read book International Symposium on Nonlinear Differential Equations and Nonlinear Mechanics written by and published by . This book was released on 1963 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: