Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
New Forms For Generalized Functions
Download New Forms For Generalized Functions full books in PDF, epub, and Kindle. Read online New Forms For Generalized Functions ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Methods of the Theory of Generalized Functions by : V. S. Vladimirov
Download or read book Methods of the Theory of Generalized Functions written by V. S. Vladimirov and published by CRC Press. This book was released on 2002-08-15 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents the general theory of generalized functions, including the Fourier, Laplace, Mellin, Hilbert, Cauchy-Bochner and Poisson integral transforms and operational calculus, with the traditional material augmented by the theory of Fourier series, abelian theorems, and boundary values of helomorphic functions for one and several variables. The author addresses several facets in depth, including convolution theory, convolution algebras and convolution equations in them, homogenous generalized functions, and multiplication of generalized functions. This book will meet the needs of researchers, engineers, and students of applied mathematics, control theory, and the engineering sciences.
Book Synopsis Generalized Functions Theory and Technique by : Ram P. Kanwal
Download or read book Generalized Functions Theory and Technique written by Ram P. Kanwal and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 474 pages. Available in PDF, EPUB and Kindle. Book excerpt: This second edition of Generalized Functions has been strengthened in many ways. The already extensive set of examples has been expanded. Since the publication of the first edition, there has been tremendous growth in the subject and I have attempted to incorporate some of these new concepts. Accordingly, almost all the chapters have been revised. The bibliography has been enlarged considerably. Some of the material has been reorganized. For example, Chapters 12 and 13 of the first edition have been consolidated into Chapter 12 of this edition by a judicious process of elimination and addition of the subject matter. The new Chapter 13 explains the interplay between the theories of moments, asymptotics, and singular perturbations. Similarly, some sections of Chapter 15 have been revised and included in earlier chapters to improve the logical flow of ideas. However, two sections are retained. The section dealing with the application of the probability theory has been revised, and I am thankful to Professor Z.L. Crvenkovic for her help. The new material included in this chapter pertains to the modern topics of periodic distributions and microlocal theory. I have demonstrated through various examples that familiarity with the generalized functions is very helpful for students in physical sciences and technology. For instance, the reader will realize from Chapter 6 how the generalized functions have revolutionized the Fourier analysis which is being used extensively in many fields of scientific activity.
Book Synopsis Generalized Functions by : I. M. Gel'fand
Download or read book Generalized Functions written by I. M. Gel'fand and published by Academic Press. This book was released on 2014-05-12 with total page 399 pages. Available in PDF, EPUB and Kindle. Book excerpt: Generalized Functions, Volume 4: Applications of Harmonic Analysis is devoted to two general topics—developments in the theory of linear topological spaces and construction of harmonic analysis in n-dimensional Euclidean and infinite-dimensional spaces. This volume specifically discusses the bilinear functionals on countably normed spaces, Hilbert-Schmidt operators, and spectral analysis of operators in rigged Hilbert spaces. The general form of positive generalized functions on the space S, continuous positive-definite functions, and conditionally positive generalized functions are also deliberated. This publication likewise considers the mean of a generalized random process, multidimensional generalized random fields, simplest properties of cylinder sets, and definition of Gaussian measures. This book is beneficial to students, specialists, and researchers aiming to acquire knowledge of functional analysis.
Book Synopsis Handbook of Function and Generalized Function Transformations by : Ahmed I. Zayed
Download or read book Handbook of Function and Generalized Function Transformations written by Ahmed I. Zayed and published by CRC Press. This book was released on 1996-05-15 with total page 684 pages. Available in PDF, EPUB and Kindle. Book excerpt: Function transformations, which include linear integral transformations, are some of the most important mathematical tools for solving problems in all areas of engineering and the physical sciences. They allow one to quickly solve a problem by breaking it down into a series of smaller, more manageable problems. The author has compiled the most important and widely used of these function transforms in applied mathematics and electrical engineering. In addition to classical transforms, newer transforms such as wavelets, Zak, and Radon are included. The book is neither a table of transforms nor a textbook, but it is a source book that provides quick and easy access to the most important properties and formulas of function and generalized function transformations. It is organized for convenient reference, with chapters broken down into the following sections:
Book Synopsis Distribution Theory and Transform Analysis by : A.H. Zemanian
Download or read book Distribution Theory and Transform Analysis written by A.H. Zemanian and published by Courier Corporation. This book was released on 2011-11-30 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: Distribution theory, a relatively recent mathematical approach to classical Fourier analysis, not only opened up new areas of research but also helped promote the development of such mathematical disciplines as ordinary and partial differential equations, operational calculus, transformation theory, and functional analysis. This text was one of the first to give a clear explanation of distribution theory; it combines the theory effectively with extensive practical applications to science and engineering problems. Based on a graduate course given at the State University of New York at Stony Brook, this book has two objectives: to provide a comparatively elementary introduction to distribution theory and to describe the generalized Fourier and Laplace transformations and their applications to integrodifferential equations, difference equations, and passive systems. After an introductory chapter defining distributions and the operations that apply to them, Chapter 2 considers the calculus of distributions, especially limits, differentiation, integrations, and the interchange of limiting processes. Some deeper properties of distributions, such as their local character as derivatives of continuous functions, are given in Chapter 3. Chapter 4 introduces the distributions of slow growth, which arise naturally in the generalization of the Fourier transformation. Chapters 5 and 6 cover the convolution process and its use in representing differential and difference equations. The distributional Fourier and Laplace transformations are developed in Chapters 7 and 8, and the latter transformation is applied in Chapter 9 to obtain an operational calculus for the solution of differential and difference equations of the initial-condition type. Some of the previous theory is applied in Chapter 10 to a discussion of the fundamental properties of certain physical systems, while Chapter 11 ends the book with a consideration of periodic distributions. Suitable for a graduate course for engineering and science students or for a senior-level undergraduate course for mathematics majors, this book presumes a knowledge of advanced calculus and the standard theorems on the interchange of limit processes. A broad spectrum of problems has been included to satisfy the diverse needs of various types of students.
Book Synopsis Generalized Functions by : Ram P. Kanwal
Download or read book Generalized Functions written by Ram P. Kanwal and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 490 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a more cohesive and sharply focused treatment of fundamental concepts and theoretical background material, with particular attention given to better delineating connections to varying applications Exposition driven by additional examples and exercises
Book Synopsis Introduction to Generalized Functions with Applications in Aerodynamics and Aeroacoustics by : F. Farassat
Download or read book Introduction to Generalized Functions with Applications in Aerodynamics and Aeroacoustics written by F. Farassat and published by . This book was released on 1994 with total page 60 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Generalized Calculus with Applications to Matter and Forces by : Luis Manuel Braga de Costa Campos
Download or read book Generalized Calculus with Applications to Matter and Forces written by Luis Manuel Braga de Costa Campos and published by CRC Press. This book was released on 2014-04-18 with total page 888 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combining mathematical theory, physical principles, and engineering problems, Generalized Calculus with Applications to Matter and Forces examines generalized functions, including the Heaviside unit jump and the Dirac unit impulse and its derivatives of all orders, in one and several dimensions. The text introduces the two main approaches to generalized functions: (1) as a nonuniform limit of a family of ordinary functions, and (2) as a functional over a set of test functions from which properties are inherited. The second approach is developed more extensively to encompass multidimensional generalized functions whose arguments are ordinary functions of several variables. As part of a series of books for engineers and scientists exploring advanced mathematics, Generalized Calculus with Applications to Matter and Forces presents generalized functions from an applied point of view, tackling problem classes such as: Gauss and Stokes’ theorems in the differential geometry, tensor calculus, and theory of potential fields Self-adjoint and non-self-adjoint problems for linear differential equations and nonlinear problems with large deformations Multipolar expansions and Green’s functions for elastic strings and bars, potential and rotational flow, electro- and magnetostatics, and more This third volume in the series Mathematics and Physics for Science and Technology is designed to complete the theory of functions and its application to potential fields, relating generalized functions to broader follow-on topics like differential equations. Featuring step-by-step examples with interpretations of results and discussions of assumptions and their consequences, Generalized Calculus with Applications to Matter and Forces enables readers to construct mathematical–physical models suited to new observations or novel engineering devices.
Book Synopsis New Generalized Functions and Multiplication of Distributions by : J.F. Colombeau
Download or read book New Generalized Functions and Multiplication of Distributions written by J.F. Colombeau and published by Elsevier. This book was released on 2000-04-01 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents a new mathematical theory of generalized functions, more general than Distribution Theory, giving a rigorous mathematical sense to any product of a finite number of distributions and to heuristic computations of Quantum Field Theory. Although the physical motivations are emphasized, the book is also addressed to mathematicians with no knowledge of physics. This work opens a new domain of research in both pure and applied mathematics.
Book Synopsis Generalized Functions, Volume 5 by : I. M. Gel′fand
Download or read book Generalized Functions, Volume 5 written by I. M. Gel′fand and published by American Mathematical Soc.. This book was released on 2016-04-19 with total page 474 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first systematic theory of generalized functions (also known as distributions) was created in the early 1950s, although some aspects were developed much earlier, most notably in the definition of the Green's function in mathematics and in the work of Paul Dirac on quantum electrodynamics in physics. The six-volume collection, Generalized Functions, written by I. M. Gel′fand and co-authors and published in Russian between 1958 and 1966, gives an introduction to generalized functions and presents various applications to analysis, PDE, stochastic processes, and representation theory. The unifying idea of Volume 5 in the series is the application of the theory of generalized functions developed in earlier volumes to problems of integral geometry, to representations of Lie groups, specifically of the Lorentz group, and to harmonic analysis on corresponding homogeneous spaces. The book is written with great clarity and requires little in the way of special previous knowledge of either group representation theory or integral geometry; it is also independent of the earlier volumes in the series. The exposition starts with the definition, properties, and main results related to the classical Radon transform, passing to integral geometry in complex space, representations of the group of complex unimodular matrices of second order, and harmonic analysis on this group and on most important homogeneous spaces related to this group. The volume ends with the study of representations of the group of real unimodular matrices of order two.
Book Synopsis Transmutations, Singular and Fractional Differential Equations with Applications to Mathematical Physics by : Elina Shishkina
Download or read book Transmutations, Singular and Fractional Differential Equations with Applications to Mathematical Physics written by Elina Shishkina and published by Academic Press. This book was released on 2020-07-24 with total page 594 pages. Available in PDF, EPUB and Kindle. Book excerpt: Transmutations, Singular and Fractional Differential Equations with Applications to Mathematical Physics connects difficult problems with similar more simple ones. The book's strategy works for differential and integral equations and systems and for many theoretical and applied problems in mathematics, mathematical physics, probability and statistics, applied computer science and numerical methods. In addition to being exposed to recent advances, readers learn to use transmutation methods not only as practical tools, but also as vehicles that deliver theoretical insights. - Presents the universal transmutation method as the most powerful for solving many problems in mathematics, mathematical physics, probability and statistics, applied computer science and numerical methods - Combines mathematical rigor with an illuminating exposition full of historical notes and fascinating details - Enables researchers, lecturers and students to find material under the single "roof"
Book Synopsis Generalized Functions, Volume 2 by : I. M. Gel'fand
Download or read book Generalized Functions, Volume 2 written by I. M. Gel'fand and published by American Mathematical Soc.. This book was released on 2016-03-30 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first systematic theory of generalized functions (also known as distributions) was created in the early 1950s, although some aspects were developed much earlier, most notably in the definition of the Green's function in mathematics and in the work of Paul Dirac on quantum electrodynamics in physics. The six-volume collection, Generalized Functions, written by I. M. Gel'fand and co-authors and published in Russian between 1958 and 1966, gives an introduction to generalized functions and presents various applications to analysis, PDE, stochastic processes, and representation theory. Volume 2 is devoted to detailed study of generalized functions as linear functionals on appropriate spaces of smooth test functions. In Chapter 1, the authors introduce and study countable-normed linear topological spaces, laying out a general theoretical foundation for the analysis of spaces of generalized functions. The two most important classes of spaces of test functions are spaces of compactly supported functions and Schwartz spaces of rapidly decreasing functions. In Chapters 2 and 3 of the book, the authors transfer many results presented in Volume 1 to generalized functions corresponding to these more general spaces. Finally, Chapter 4 is devoted to the study of the Fourier transform; in particular, it includes appropriate versions of the Paley-Wiener theorem.
Book Synopsis Geometric Theory of Generalized Functions with Applications to General Relativity by : M. Grosser
Download or read book Geometric Theory of Generalized Functions with Applications to General Relativity written by M. Grosser and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 517 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past few years a certain shift of focus within the theory of algebras of generalized functions (in the sense of J. F. Colombeau) has taken place. Originating in infinite dimensional analysis and initially applied mainly to problems in nonlinear partial differential equations involving singularities, the theory has undergone a change both in in ternal structure and scope of applicability, due to a growing number of applications to questions of a more geometric nature. The present book is intended to provide an in-depth presentation of these develop ments comprising its structural aspects within the theory of generalized functions as well as a (selective but, as we hope, representative) set of applications. This main purpose of the book is accompanied by a number of sub ordinate goals which we were aiming at when arranging the material included here. First, despite the fact that by now several excellent mono graphs on Colombeau algebras are available, we have decided to give a self-contained introduction to the field in Chapter 1. Our motivation for this decision derives from two main features of our approach. On the one hand, in contrast to other treatments of the subject we base our intro duction to the field on the so-called special variant of the algebras, which makes many of the fundamental ideas of the field particularly transpar ent and at the same time facilitates and motivates the introduction of the more involved concepts treated later in the chapter.
Book Synopsis C-O-R Generalized Functions, Current Algebras, and Control by : Robert Hermann
Download or read book C-O-R Generalized Functions, Current Algebras, and Control written by Robert Hermann and published by Math Science Press. This book was released on 1994 with total page 205 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Nonlinear Theory of Generalized Functions by : Michael Oberguggenberger
Download or read book Nonlinear Theory of Generalized Functions written by Michael Oberguggenberger and published by Routledge. This book was released on 2022-02-28 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: Questions regarding the interplay of nonlinearity and the creation and propagation of singularities arise in a variety of fields-including nonlinear partial differential equations, noise-driven stochastic partial differential equations, general relativity, and geometry with singularities. A workshop held at the Erwin-Schrödinger International Institute for Mathematical Physics in Vienna investigated these questions and culminated in this volume of invited papers from experts in the fields of nonlinear partial differential equations, structure theory of generalized functions, geometry and general relativity, stochastic partial differential equations, and nonstandard analysis. The authors provide the latest research relevant to work in partial differential equations, mathematical physics, and nonlinear analysis. With a focus on applications, this books provides a compilation of recent approaches to the problem of singularities in nonlinear models. The theory of differential algebras of generalized functions serves as the central theme of the project, along with its interrelations with classical methods.
Book Synopsis Elementary Introduction to New Generalized Functions by : J.F. Colombeau
Download or read book Elementary Introduction to New Generalized Functions written by J.F. Colombeau and published by Elsevier. This book was released on 2011-08-18 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: The author's previous book `New Generalized Functions and Multiplication of Distributions' (North-Holland, 1984) introduced `new generalized functions' in order to explain heuristic computations of Physics and to give a meaning to any finite product of distributions. The aim here is to present these functions in a more direct and elementary way. In Part I, the reader is assumed to be familiar only with the concepts of open and compact subsets of R&eegr;, of C∞ functions of several real variables and with some rudiments of integration theory. Part II defines tempered generalized functions, i.e. generalized functions which are, in some sense, increasing at infinity no faster than a polynomial (as well as all their partial derivatives). Part III shows that, in this setting, the partial differential equations have new solutions. The results obtained show that this setting is perfectly adapted to the study of nonlinear partial differential equations, and indicate some new perspectives in this field.
Book Synopsis Generalized Functions, Volume 3 by : I. M. Gel'fand
Download or read book Generalized Functions, Volume 3 written by I. M. Gel'fand and published by American Mathematical Soc.. This book was released on 2016-03-30 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first systematic theory of generalized functions (also known as distributions) was created in the early 1950s, although some aspects were developed much earlier, most notably in the definition of the Green's function in mathematics and in the work of Paul Dirac on quantum electrodynamics in physics. The six-volume collection, Generalized Functions, written by I. M. Gel'fand and co-authors and published in Russian between 1958 and 1966, gives an introduction to generalized functions and presents various applications to analysis, PDE, stochastic processes, and representation theory. In Volume 3, applications of generalized functions to the Cauchy problem for systems of partial differential equations with constant coefficients are considered. The book includes the study of uniqueness classes of solutions of the Cauchy problem and the study of classes of functions where the Cauchy problem is well posed. The last chapter of this volume presents results related to spectral decomposition of differential operators related to generalized eigenfunctions.