Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
New Directions In Locally Compact Groups
Download New Directions In Locally Compact Groups full books in PDF, epub, and Kindle. Read online New Directions In Locally Compact Groups ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis New Directions in Locally Compact Groups by : Pierre-Emmanuel Caprace
Download or read book New Directions in Locally Compact Groups written by Pierre-Emmanuel Caprace and published by Cambridge University Press. This book was released on 2018-02-08 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection of expository articles by a range of established experts and newer researchers provides an overview of the recent developments in the theory of locally compact groups. It includes introductory articles on totally disconnected locally compact groups, profinite groups, p-adic Lie groups and the metric geometry of locally compact groups. Concrete examples, including groups acting on trees and Neretin groups, are discussed in detail. An outline of the emerging structure theory of locally compact groups beyond the connected case is presented through three complementary approaches: Willis' theory of the scale function, global decompositions by means of subnormal series, and the local approach relying on the structure lattice. An introduction to lattices, invariant random subgroups and L2-invariants, and a brief account of the Burger–Mozes construction of simple lattices are also included. A final chapter collects various problems suggesting future research directions.
Book Synopsis New Directions in Locally Compact Groups by : Pierre-Emmanuel Caprace
Download or read book New Directions in Locally Compact Groups written by Pierre-Emmanuel Caprace and published by Cambridge University Press. This book was released on 2018-02-08 with total page 367 pages. Available in PDF, EPUB and Kindle. Book excerpt: A snapshot of the major renaissance happening today in the study of locally compact groups and their many applications.
Book Synopsis An Invitation to Coarse Groups by : Arielle Leitner
Download or read book An Invitation to Coarse Groups written by Arielle Leitner and published by Springer Nature. This book was released on 2024-01-13 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book lays the foundation for a theory of coarse groups: namely, sets with operations that satisfy the group axioms “up to uniformly bounded error”. These structures are the group objects in the category of coarse spaces, and arise naturally as approximate subgroups, or as coarse kernels. The first aim is to provide a standard entry-level introduction to coarse groups. Extra care has been taken to give a detailed, self-contained and accessible account of the theory. The second aim is to quickly bring the reader to the forefront of research. This is easily accomplished, as the subject is still young, and even basic questions remain unanswered. Reflecting its dual purpose, the book is divided into two parts. The first part covers the fundamentals of coarse groups and their actions. Here the theory of coarse homomorphisms, quotients and subgroups is developed, with proofs of coarse versions of the isomorphism theorems, and it is shown how coarse actions are related to fundamental aspects of geometric group theory. The second part, which is less self-contained, is an invitation to further research, where each thread leads to open questions of varying depth and difficulty. Among other topics, it explores coarse group structures on set-groups, groups of coarse automorphisms and spaces of controlled maps. The main focus is on connections between the theory of coarse groups and classical subjects, including: number theory; the study of bi-invariant metrics on groups; quasimorphisms and stable commutator length; groups of outer automorphisms; and topological groups and their actions. The book will primarily be of interest to researchers and graduate students in geometric group theory, topology, category theory and functional analysis, but some parts will also be accessible to advanced undergraduates.
Book Synopsis New Directions in Locally Compact Groups by : Pierre-Emmanuel Caprace
Download or read book New Directions in Locally Compact Groups written by Pierre-Emmanuel Caprace and published by Cambridge University Press. This book was released on 2018-02-08 with total page 367 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection of expository articles by a range of established experts and newer researchers provides an overview of the recent developments in the theory of locally compact groups. It includes introductory articles on totally disconnected locally compact groups, profinite groups, p-adic Lie groups and the metric geometry of locally compact groups. Concrete examples, including groups acting on trees and Neretin groups, are discussed in detail. An outline of the emerging structure theory of locally compact groups beyond the connected case is presented through three complementary approaches: Willis' theory of the scale function, global decompositions by means of subnormal series, and the local approach relying on the structure lattice. An introduction to lattices, invariant random subgroups and L2-invariants, and a brief account of the Burger–Mozes construction of simple lattices are also included. A final chapter collects various problems suggesting future research directions.
Book Synopsis Probability Measures on Groups by : H. Heyer
Download or read book Probability Measures on Groups written by H. Heyer and published by Springer. This book was released on 2006-11-17 with total page 492 pages. Available in PDF, EPUB and Kindle. Book excerpt: a
Book Synopsis Vector Bundles on Curves - New Directions by : Shrawan Kumar
Download or read book Vector Bundles on Curves - New Directions written by Shrawan Kumar and published by Springer. This book was released on 2006-11-14 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book gives a survey of some recent developments in the theory of bundles on curves arising out of the work of Drinfeld and from insights coming from Theoretical Physics. It deals with: 1. The relation between conformal blocks and generalised theta functions (Lectures by S. Kumar) 2. Drinfeld Shtukas (Lectures by G. Laumon) 3. Drinfeld modules and Elliptic Sheaves (Lectures by U. Stuhler) The latter topics are useful in connection with Langlands programme for function fields. The contents of the book would give a comprehensive introduction of these topics to graduate students and researchers.
Book Synopsis Ergodic Theoretic Methods in Group Homology by : Clara Löh
Download or read book Ergodic Theoretic Methods in Group Homology written by Clara Löh and published by Springer Nature. This book was released on 2020-03-14 with total page 119 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a concise introduction to ergodic methods in group homology, with a particular focus on the computation of L2-Betti numbers. Group homology integrates group actions into homological structure. Coefficients based on probability measure preserving actions combine ergodic theory and homology. An example of such an interaction is provided by L2-Betti numbers: these invariants can be understood in terms of group homology with coefficients related to the group von Neumann algebra, via approximation by finite index subgroups, or via dynamical systems. In this way, L2-Betti numbers lead to orbit/measure equivalence invariants and measured group theory helps to compute L2-Betti numbers. Similar methods apply also to compute the rank gradient/cost of groups as well as the simplicial volume of manifolds. This book introduces L2-Betti numbers of groups at an elementary level and then develops the ergodic point of view, emphasising the connection with approximation phenomena for homological gradient invariants of groups and spaces. The text is an extended version of the lecture notes for a minicourse at the MSRI summer graduate school “Random and arithmetic structures in topology” and thus accessible to the graduate or advanced undergraduate students. Many examples and exercises illustrate the material.
Book Synopsis Periodic Locally Compact Groups by : Wolfgang Herfort
Download or read book Periodic Locally Compact Groups written by Wolfgang Herfort and published by Walter de Gruyter GmbH & Co KG. This book was released on 2018-11-19 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: This authoritative book on periodic locally compact groups is divided into three parts: The first part covers the necessary background material on locally compact groups including the Chabauty topology on the space of closed subgroups of a locally compact group, its Sylow theory, and the introduction, classifi cation and use of inductively monothetic groups. The second part develops a general structure theory of locally compact near abelian groups, pointing out some of its connections with number theory and graph theory and illustrating it by a large exhibit of examples. Finally, the third part uses this theory for a complete, enlarged and novel presentation of Mukhin’s pioneering work generalizing to locally compact groups Iwasawa’s early investigations of the lattice of subgroups of abstract groups. Contents Part I: Background information on locally compact groups Locally compact spaces and groups Periodic locally compact groups and their Sylow theory Abelian periodic groups Scalar automorphisms and the mastergraph Inductively monothetic groups Part II: Near abelian groups The definition of near abelian groups Important consequences of the definitions Trivial near abelian groups The class of near abelian groups The Sylow structure of periodic nontrivial near abelian groups and their prime graphs A list of examples Part III: Applications Classifying topologically quasihamiltonian groups Locally compact groups with a modular subgroup lattice Strongly topologically quasihamiltonian groups
Book Synopsis Groups and Graphs, Designs and Dynamics by : R. A. Bailey
Download or read book Groups and Graphs, Designs and Dynamics written by R. A. Bailey and published by Cambridge University Press. This book was released on 2024-05-30 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection of four short courses looks at group representations, graph spectra, statistical optimality, and symbolic dynamics, highlighting their common roots in linear algebra. It leads students from the very beginnings in linear algebra to high-level applications: representations of finite groups, leading to probability models and harmonic analysis; eigenvalues of growing graphs from quantum probability techniques; statistical optimality of designs from Laplacian eigenvalues of graphs; and symbolic dynamics, applying matrix stability and K-theory. An invaluable resource for researchers and beginning Ph.D. students, this book includes copious exercises, notes, and references.
Book Synopsis Algebraic Combinatorics and the Monster Group by : Alexander A. Ivanov
Download or read book Algebraic Combinatorics and the Monster Group written by Alexander A. Ivanov and published by Cambridge University Press. This book was released on 2023-08-17 with total page 584 pages. Available in PDF, EPUB and Kindle. Book excerpt: Covering, arguably, one of the most attractive and mysterious mathematical objects, the Monster group, this text strives to provide an insightful introduction and the discusses the current state of the field. The Monster group is related to many areas of mathematics, as well as physics, from number theory to string theory. This book cuts through the complex nature of the field, highlighting some of the mysteries and intricate relationships involved. Containing many meaningful examples and a manual introduction to the computer package GAP, it provides the opportunity and resources for readers to start their own calculations. Some 20 experts here share their expertise spanning this exciting field, and the resulting volume is ideal for researchers and graduate students working in Combinatorial Algebra, Group theory and related areas.
Book Synopsis (Co)end Calculus by : Fosco Loregian
Download or read book (Co)end Calculus written by Fosco Loregian and published by Cambridge University Press. This book was released on 2021-07-22 with total page 331 pages. Available in PDF, EPUB and Kindle. Book excerpt: This easy-to-cite handbook gives the first systematic treatment of the (co)end calculus in category theory and its applications.
Book Synopsis Stacks Project Expository Collection by : Pieter Belmans
Download or read book Stacks Project Expository Collection written by Pieter Belmans and published by Cambridge University Press. This book was released on 2022-09-30 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Stacks Project Expository Collection (SPEC) compiles expository articles in advanced algebraic geometry, intended to bring graduate students and researchers up to speed on recent developments in the geometry of algebraic spaces and algebraic stacks. The articles in the text make explicit in modern language many results, proofs, and examples that were previously only implicit, incomplete, or expressed in classical terms in the literature. Where applicable this is done by explicitly referring to the Stacks project for preliminary results. Topics include the construction and properties of important moduli problems in algebraic geometry (such as the Deligne–Mumford compactification of the moduli of curves, the Picard functor, or moduli of semistable vector bundles and sheaves), and arithmetic questions for fields and algebraic spaces.
Book Synopsis Facets of Algebraic Geometry by : Paolo Aluffi
Download or read book Facets of Algebraic Geometry written by Paolo Aluffi and published by Cambridge University Press. This book was released on 2022-04-07 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written to honor the enduring influence of William Fulton, these articles present substantial contributions to algebraic geometry.
Book Synopsis Equivariant Topology and Derived Algebra by : Scott Balchin
Download or read book Equivariant Topology and Derived Algebra written by Scott Balchin and published by Cambridge University Press. This book was released on 2021-11-18 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: A collection of research papers, both new and expository, based on the interests of Professor J. P. C. Greenlees.
Book Synopsis Facets of Algebraic Geometry: Volume 2 by : Paolo Aluffi
Download or read book Facets of Algebraic Geometry: Volume 2 written by Paolo Aluffi and published by Cambridge University Press. This book was released on 2022-04-07 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written to honor the 80th birthday of William Fulton, the articles collected in this volume (the second of a pair) present substantial contributions to algebraic geometry and related fields, with an emphasis on combinatorial algebraic geometry and intersection theory. Featured include commutative algebra, moduli spaces, quantum cohomology, representation theory, Schubert calculus, and toric and tropical geometry. The range of these contributions is a testament to the breadth and depth of Fulton's mathematical influence. The authors are all internationally recognized experts, and include well-established researchers as well as rising stars of a new generation of mathematicians. The text aims to stimulate progress and provide inspiration to graduate students and researchers in the field.
Book Synopsis Elliptic Regularity Theory by Approximation Methods by : Edgard A. Pimentel
Download or read book Elliptic Regularity Theory by Approximation Methods written by Edgard A. Pimentel and published by Cambridge University Press. This book was released on 2022-06-30 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presenting the basics of elliptic PDEs in connection with regularity theory, the book bridges fundamental breakthroughs – such as the Krylov–Safonov and Evans–Krylov results, Caffarelli's regularity theory, and the counterexamples due to Nadirashvili and Vlăduţ – and modern developments, including improved regularity for flat solutions and the partial regularity result. After presenting this general panorama, accounting for the subtleties surrounding C-viscosity and Lp-viscosity solutions, the book examines important models through approximation methods. The analysis continues with the asymptotic approach, based on the recession operator. After that, approximation techniques produce a regularity theory for the Isaacs equation, in Sobolev and Hölder spaces. Although the Isaacs operator lacks convexity, approximation methods are capable of producing Hölder continuity for the Hessian of the solutions by connecting the problem with a Bellman equation. To complete the book, degenerate models are studied and their optimal regularity is described.
Book Synopsis Bounded Cohomology and Simplicial Volume by : Caterina Campagnolo
Download or read book Bounded Cohomology and Simplicial Volume written by Caterina Campagnolo and published by Cambridge University Press. This book was released on 2022-11-17 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since their introduction by Gromov in the 1980s, the study of bounded cohomology and simplicial volume has developed into an active field connected to geometry and group theory. This monograph, arising from a learning seminar for young researchers working in the area, provides a collection of different perspectives on the subject, both classical and recent. The book's introduction presents the main definitions of the theories of bounded cohomology and simplicial volume, outlines their history, and explains their principal motivations and applications. Individual chapters then present different aspects of the theory, with a focus on examples. Detailed references to foundational papers and the latest research are given for readers wishing to dig deeper. The prerequisites are only basic knowledge of classical algebraic topology and of group theory, and the presentations are gentle and informal in order to be accessible to beginning graduate students wanting to enter this lively and topical field.