Neural Networks in a Softcomputing Framework

Download Neural Networks in a Softcomputing Framework PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1846283035
Total Pages : 610 pages
Book Rating : 4.8/5 (462 download)

DOWNLOAD NOW!


Book Synopsis Neural Networks in a Softcomputing Framework by : Ke-Lin Du

Download or read book Neural Networks in a Softcomputing Framework written by Ke-Lin Du and published by Springer Science & Business Media. This book was released on 2006-08-02 with total page 610 pages. Available in PDF, EPUB and Kindle. Book excerpt: This concise but comprehensive textbook reviews the most popular neural-network methods and their associated techniques. Each chapter provides state-of-the-art descriptions of important major research results of the respective neural-network methods. A range of relevant computational intelligence topics, such as fuzzy logic and evolutionary algorithms – powerful tools for neural-network learning – are introduced. The systematic survey of neural-network models and exhaustive references list will point readers toward topics for future research. The algorithms outlined also make this textbook a valuable reference for scientists and practitioners working in pattern recognition, signal processing, speech and image processing, data analysis and artificial intelligence.

Recurrent Neural Networks and Soft Computing

Download Recurrent Neural Networks and Soft Computing PDF Online Free

Author :
Publisher : BoD – Books on Demand
ISBN 13 : 9535104098
Total Pages : 306 pages
Book Rating : 4.5/5 (351 download)

DOWNLOAD NOW!


Book Synopsis Recurrent Neural Networks and Soft Computing by : Mahmoud ElHefnawi

Download or read book Recurrent Neural Networks and Soft Computing written by Mahmoud ElHefnawi and published by BoD – Books on Demand. This book was released on 2012-03-30 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: New applications in recurrent neural networks are covered by this book, which will be required reading in the field. Methodological tools covered include ranking indices for fuzzy numbers, a neuro-fuzzy digital filter and mapping graphs of parallel programmes. The scope of the techniques profiled in real-world applications is evident from chapters on the recognition of severe weather patterns, adult and foetal ECGs in healthcare and the prediction of temperature time-series signals. Additional topics in this vein are the application of AI techniques to electromagnetic interference problems, bioprocess identification and I-term control and the use of BRNN-SVM to improve protein-domain prediction accuracy. Recurrent neural networks can also be used in virtual reality and nonlinear dynamical systems, as shown by two chapters.

Neural Networks and Statistical Learning

Download Neural Networks and Statistical Learning PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1447155718
Total Pages : 834 pages
Book Rating : 4.4/5 (471 download)

DOWNLOAD NOW!


Book Synopsis Neural Networks and Statistical Learning by : Ke-Lin Du

Download or read book Neural Networks and Statistical Learning written by Ke-Lin Du and published by Springer Science & Business Media. This book was released on 2013-12-09 with total page 834 pages. Available in PDF, EPUB and Kindle. Book excerpt: Providing a broad but in-depth introduction to neural network and machine learning in a statistical framework, this book provides a single, comprehensive resource for study and further research. All the major popular neural network models and statistical learning approaches are covered with examples and exercises in every chapter to develop a practical working understanding of the content. Each of the twenty-five chapters includes state-of-the-art descriptions and important research results on the respective topics. The broad coverage includes the multilayer perceptron, the Hopfield network, associative memory models, clustering models and algorithms, the radial basis function network, recurrent neural networks, principal component analysis, nonnegative matrix factorization, independent component analysis, discriminant analysis, support vector machines, kernel methods, reinforcement learning, probabilistic and Bayesian networks, data fusion and ensemble learning, fuzzy sets and logic, neurofuzzy models, hardware implementations, and some machine learning topics. Applications to biometric/bioinformatics and data mining are also included. Focusing on the prominent accomplishments and their practical aspects, academic and technical staff, graduate students and researchers will find that this provides a solid foundation and encompassing reference for the fields of neural networks, pattern recognition, signal processing, machine learning, computational intelligence, and data mining.

Neuro-fuzzy and Soft Computing

Download Neuro-fuzzy and Soft Computing PDF Online Free

Author :
Publisher : Pearson Education
ISBN 13 :
Total Pages : 658 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Neuro-fuzzy and Soft Computing by : Jyh-Shing Roger Jang

Download or read book Neuro-fuzzy and Soft Computing written by Jyh-Shing Roger Jang and published by Pearson Education. This book was released on 1997 with total page 658 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neuro-Fuzzy and Soft Computing provides the first comprehensive treatment of the constituent methodologies underlying neuro-fuzzy and soft computing, an evolving branch of computational intelligence. The constituent methodologies include fuzzy set theory, neural networks, data clustering techniques, and several stochastic optimization methods that do not require gradient information. In particular, the authors put equal emphasis on theoretical aspects of covered methodologies, as well as empirical observations and verifications of various applications in practice. The book is well suited for use as a text for courses on computational intelligence and as a single reference source for this emerging field. To help readers understand the material the presentation includes more than 50 examples, more than 150 exercises, over 300 illustrations, and more than 150 Matlab scripts. In addition, Matlab is utilized to visualize the processes of fuzzy reasoning, neural-network learning, neuro-fuzzy integration and training, and gradient-free optimization (such as genetic algorithms, simulated annealing, random search, and downhill Simplex method). The presentation also makes use of SIMULINK for neuro-fuzzy control system simulations. All Matlab scripts used in the book are available on the free companion software disk that may be ordered by using the enclosed reply card. The book also contains an "Internet Resource Page" to point the reader to on-line neuro-fuzzy and soft computing home pages, publications, public-domain software, research institutes, news groups, etc. All the HTTP and FTP addresses are available as a bookmark file on the companion software disk.

Neural Networks and Statistical Learning

Download Neural Networks and Statistical Learning PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 1447174526
Total Pages : 996 pages
Book Rating : 4.4/5 (471 download)

DOWNLOAD NOW!


Book Synopsis Neural Networks and Statistical Learning by : Ke-Lin Du

Download or read book Neural Networks and Statistical Learning written by Ke-Lin Du and published by Springer Nature. This book was released on 2019-09-12 with total page 996 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a broad yet detailed introduction to neural networks and machine learning in a statistical framework. A single, comprehensive resource for study and further research, it explores the major popular neural network models and statistical learning approaches with examples and exercises and allows readers to gain a practical working understanding of the content. This updated new edition presents recently published results and includes six new chapters that correspond to the recent advances in computational learning theory, sparse coding, deep learning, big data and cloud computing. Each chapter features state-of-the-art descriptions and significant research findings. The topics covered include: • multilayer perceptron; • the Hopfield network; • associative memory models;• clustering models and algorithms; • t he radial basis function network; • recurrent neural networks; • nonnegative matrix factorization; • independent component analysis; •probabilistic and Bayesian networks; and • fuzzy sets and logic. Focusing on the prominent accomplishments and their practical aspects, this book provides academic and technical staff, as well as graduate students and researchers with a solid foundation and comprehensive reference on the fields of neural networks, pattern recognition, signal processing, and machine learning.

Explainable Neural Networks Based on Fuzzy Logic and Multi-criteria Decision Tools

Download Explainable Neural Networks Based on Fuzzy Logic and Multi-criteria Decision Tools PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030722805
Total Pages : 186 pages
Book Rating : 4.0/5 (37 download)

DOWNLOAD NOW!


Book Synopsis Explainable Neural Networks Based on Fuzzy Logic and Multi-criteria Decision Tools by : József Dombi

Download or read book Explainable Neural Networks Based on Fuzzy Logic and Multi-criteria Decision Tools written by József Dombi and published by Springer Nature. This book was released on 2021-04-28 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: The research presented in this book shows how combining deep neural networks with a special class of fuzzy logical rules and multi-criteria decision tools can make deep neural networks more interpretable – and even, in many cases, more efficient. Fuzzy logic together with multi-criteria decision-making tools provides very powerful tools for modeling human thinking. Based on their common theoretical basis, we propose a consistent framework for modeling human thinking by using the tools of all three fields: fuzzy logic, multi-criteria decision-making, and deep learning to help reduce the black-box nature of neural models; a challenge that is of vital importance to the whole research community.

Artificial Intelligence and Integrated Intelligent Information Systems: Emerging Technologies and Applications

Download Artificial Intelligence and Integrated Intelligent Information Systems: Emerging Technologies and Applications PDF Online Free

Author :
Publisher : IGI Global
ISBN 13 : 1599042517
Total Pages : 478 pages
Book Rating : 4.5/5 (99 download)

DOWNLOAD NOW!


Book Synopsis Artificial Intelligence and Integrated Intelligent Information Systems: Emerging Technologies and Applications by : Zha, Xuan

Download or read book Artificial Intelligence and Integrated Intelligent Information Systems: Emerging Technologies and Applications written by Zha, Xuan and published by IGI Global. This book was released on 2006-10-31 with total page 478 pages. Available in PDF, EPUB and Kindle. Book excerpt: Researchers in the evolving fields of artificial intelligence and information systems are constantly presented with new challenges. Artificial Intelligence and Integrated Intelligent Information Systems: Emerging Technologies and Applications provides both researchers and professionals with the latest knowledge applied to customized logic systems, agent-based approaches to modeling, and human-based models. Artificial Intelligence and Integrated Intelligent Information Systems: Emerging Technologies and Applications presents the recent advances in multi-mobile agent systems, the product development process, fuzzy logic systems, neural networks, and ambient intelligent environments among many other innovations in this exciting field.

Neural Networks In A Softcomputing Framework

Download Neural Networks In A Softcomputing Framework PDF Online Free

Author :
Publisher :
ISBN 13 : 9788181289537
Total Pages : 566 pages
Book Rating : 4.2/5 (895 download)

DOWNLOAD NOW!


Book Synopsis Neural Networks In A Softcomputing Framework by :

Download or read book Neural Networks In A Softcomputing Framework written by and published by . This book was released on 2008-04-01 with total page 566 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Neural-Symbolic Learning Systems

Download Neural-Symbolic Learning Systems PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1447102118
Total Pages : 276 pages
Book Rating : 4.4/5 (471 download)

DOWNLOAD NOW!


Book Synopsis Neural-Symbolic Learning Systems by : Artur S. d'Avila Garcez

Download or read book Neural-Symbolic Learning Systems written by Artur S. d'Avila Garcez and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial Intelligence is concerned with producing devices that help or replace human beings in their daily activities. Neural-symbolic learning systems play a central role in this task by combining, and trying to benefit from, the advantages of both the neural and symbolic paradigms of artificial intelligence. This book provides a comprehensive introduction to the field of neural-symbolic learning systems, and an invaluable overview of the latest research issues in this area. It is divided into three sections, covering the main topics of neural-symbolic integration - theoretical advances in knowledge representation and learning, knowledge extraction from trained neural networks, and inconsistency handling in neural-symbolic systems. Each section provides a balance of theory and practice, giving the results of applications using real-world problems in areas such as DNA sequence analysis, power systems fault diagnosis, and software requirements specifications. Neural-Symbolic Learning Systems will be invaluable reading for researchers and graduate students in Engineering, Computing Science, Artificial Intelligence, Machine Learning and Neurocomputing. It will also be of interest to Intelligent Systems practitioners and anyone interested in applications of hybrid artificial intelligence systems.

Intelligent Technologies for Information Analysis

Download Intelligent Technologies for Information Analysis PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3662079526
Total Pages : 724 pages
Book Rating : 4.6/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Intelligent Technologies for Information Analysis by : Ning Zhong

Download or read book Intelligent Technologies for Information Analysis written by Ning Zhong and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 724 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intelligent Information Technology (iiT) encompasses the theories and ap plications of artificial intelligence, statistical pattern recognition, learning theory, data warehousing, data mining and knowledge discovery, Grid com puting, and autonomous agents and multi-agent systems in the context of today's as well as future IT, such as Electronic Commerce (EC), Business Intelligence (BI), Social Intelligence (SI), Web Intelligence (WI), Knowledge Grid (KG), and Knowledge Community (KC), among others. The multi-author monograph presents the current state of the research and development in intelligent technologies for information analysis, in par ticular, advances in agents, data mining, and learning theory, from both the oretical and application aspects. It investigates the future of information technology (IT) from a new intelligent IT (iiT) perspective, and highlights major iiT-related topics by structuring an introductory chapter and 22 sur vey/research chapters into 5 parts: (1) emerging data mining technology, (2) data mining for Web intelligence, (3) emerging agent technology, ( 4) emerging soft computing technology, and (5) statistical learning theory. Each chapter includes the original work of the author(s) as well as a comprehensive survey related to the chapter's topic. This book will become a valuable source of reference for R&D profession als active in advanced intelligent information technologies. Students as well as IT professionals and ambitious practitioners concerned with advanced in telligent information technologies will appreciate the book as a useful text enhanced by numerous illustrations and examples.

Applied Soft Computing Technologies: The Challenge of Complexity

Download Applied Soft Computing Technologies: The Challenge of Complexity PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540316620
Total Pages : 838 pages
Book Rating : 4.5/5 (43 download)

DOWNLOAD NOW!


Book Synopsis Applied Soft Computing Technologies: The Challenge of Complexity by : Ajith Abraham

Download or read book Applied Soft Computing Technologies: The Challenge of Complexity written by Ajith Abraham and published by Springer Science & Business Media. This book was released on 2006-08-11 with total page 838 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents the proceedings of the 9th Online World Conference on Soft Computing in Industrial Applications, held on the World Wide Web in 2004. It includes lectures, original papers and tutorials presented during the conference. The book brings together outstanding research and developments in soft computing, including evolutionary computation, fuzzy logic, neural networks, and their fusion, and its applications in science and technology.

Neural Network Design

Download Neural Network Design PDF Online Free

Author :
Publisher :
ISBN 13 : 9789812403766
Total Pages : pages
Book Rating : 4.4/5 (37 download)

DOWNLOAD NOW!


Book Synopsis Neural Network Design by : Martin T. Hagan

Download or read book Neural Network Design written by Martin T. Hagan and published by . This book was released on 2003 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Complex System Modelling and Control Through Intelligent Soft Computations

Download Complex System Modelling and Control Through Intelligent Soft Computations PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319128833
Total Pages : 856 pages
Book Rating : 4.3/5 (191 download)

DOWNLOAD NOW!


Book Synopsis Complex System Modelling and Control Through Intelligent Soft Computations by : Quanmin Zhu

Download or read book Complex System Modelling and Control Through Intelligent Soft Computations written by Quanmin Zhu and published by Springer. This book was released on 2014-11-29 with total page 856 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book offers a snapshot of the theories and applications of soft computing in the area of complex systems modeling and control. It presents the most important findings discussed during the 5th International Conference on Modelling, Identification and Control, held in Cairo, from August 31-September 2, 2013. The book consists of twenty-nine selected contributions, which have been thoroughly reviewed and extended before their inclusion in the volume. The different chapters, written by active researchers in the field, report on both current theories and important applications of soft-computing. Besides providing the readers with soft-computing fundamentals, and soft-computing based inductive methodologies/algorithms, the book also discusses key industrial soft-computing applications, as well as multidisciplinary solutions developed for a variety of purposes, like windup control, waste management, security issues, biomedical applications and many others. It is a perfect reference guide for graduate students, researchers and practitioners in the area of soft computing, systems modeling and control.

Soft Computing in Acoustics

Download Soft Computing in Acoustics PDF Online Free

Author :
Publisher : Physica
ISBN 13 : 3790818755
Total Pages : 254 pages
Book Rating : 4.7/5 (98 download)

DOWNLOAD NOW!


Book Synopsis Soft Computing in Acoustics by : Bozena Kostek

Download or read book Soft Computing in Acoustics written by Bozena Kostek and published by Physica. This book was released on 2013-06-29 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applications of some selected soft computing methods to acoustics and sound engineering are presented in this book. The aim of this research study is the implementation of soft computing methods to musical signal analysis and to the recognition of musical sounds and phrases. Accordingly, some methods based on such learning algorithms as neural networks, rough sets and fuzzy-logic were conceived, implemented and tested. Additionally, the above-mentioned methods were applied to the analysis and verification of subjective testing results. The last problem discussed within the framework of this book was the problem of fuzzy control of the classical pipe organ instrument. The obtained results show that computational intelligence and soft computing may be used for solving some vital problems in both musical and architectural acoustics.

Artificial Intelligence and Soft Computing

Download Artificial Intelligence and Soft Computing PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319393847
Total Pages : 788 pages
Book Rating : 4.3/5 (193 download)

DOWNLOAD NOW!


Book Synopsis Artificial Intelligence and Soft Computing by : Leszek Rutkowski

Download or read book Artificial Intelligence and Soft Computing written by Leszek Rutkowski and published by Springer. This book was released on 2016-05-30 with total page 788 pages. Available in PDF, EPUB and Kindle. Book excerpt: The two-volume set LNAI 9692 and LNAI 9693 constitutes the refereed proceedings of the 15th International Conference on Artificial Intelligence and Soft Computing, ICAISC 2016, held in Zakopane, Poland in June 2016. The 134 revised full papers presented were carefully reviewed and selected from 343 submissions. The papers included in the first volume are organized in the following topical sections: neural networks and their applications; fuzzy systems and their applications; evolutionary algorithms and their applications; agent systems, robotics and control; and pattern classification. The second volume is divided in the following parts: bioinformatics, biometrics and medical applications; data mining; artificial intelligence in modeling and simulation; visual information coding meets machine learning; and various problems of artificial intelligence.

Neural Networks and Deep Learning

Download Neural Networks and Deep Learning PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319944630
Total Pages : 512 pages
Book Rating : 4.3/5 (199 download)

DOWNLOAD NOW!


Book Synopsis Neural Networks and Deep Learning by : Charu C. Aggarwal

Download or read book Neural Networks and Deep Learning written by Charu C. Aggarwal and published by Springer. This book was released on 2018-08-25 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers both classical and modern models in deep learning. The primary focus is on the theory and algorithms of deep learning. The theory and algorithms of neural networks are particularly important for understanding important concepts, so that one can understand the important design concepts of neural architectures in different applications. Why do neural networks work? When do they work better than off-the-shelf machine-learning models? When is depth useful? Why is training neural networks so hard? What are the pitfalls? The book is also rich in discussing different applications in order to give the practitioner a flavor of how neural architectures are designed for different types of problems. Applications associated with many different areas like recommender systems, machine translation, image captioning, image classification, reinforcement-learning based gaming, and text analytics are covered. The chapters of this book span three categories: The basics of neural networks: Many traditional machine learning models can be understood as special cases of neural networks. An emphasis is placed in the first two chapters on understanding the relationship between traditional machine learning and neural networks. Support vector machines, linear/logistic regression, singular value decomposition, matrix factorization, and recommender systems are shown to be special cases of neural networks. These methods are studied together with recent feature engineering methods like word2vec. Fundamentals of neural networks: A detailed discussion of training and regularization is provided in Chapters 3 and 4. Chapters 5 and 6 present radial-basis function (RBF) networks and restricted Boltzmann machines. Advanced topics in neural networks: Chapters 7 and 8 discuss recurrent neural networks and convolutional neural networks. Several advanced topics like deep reinforcement learning, neural Turing machines, Kohonen self-organizing maps, and generative adversarial networks are introduced in Chapters 9 and 10. The book is written for graduate students, researchers, and practitioners. Numerous exercises are available along with a solution manual to aid in classroom teaching. Where possible, an application-centric view is highlighted in order to provide an understanding of the practical uses of each class of techniques.

System and Circuit Design for Biologically-Inspired Intelligent Learning

Download System and Circuit Design for Biologically-Inspired Intelligent Learning PDF Online Free

Author :
Publisher : IGI Global
ISBN 13 : 1609600207
Total Pages : 412 pages
Book Rating : 4.6/5 (96 download)

DOWNLOAD NOW!


Book Synopsis System and Circuit Design for Biologically-Inspired Intelligent Learning by : Temel, Turgay

Download or read book System and Circuit Design for Biologically-Inspired Intelligent Learning written by Temel, Turgay and published by IGI Global. This book was released on 2010-10-31 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: "The objective of the book is to introduce and bring together well-known circuit design aspects, as well as to cover up-to-date outcomes of theoretical studies in decision-making, biologically-inspired, and artificial intelligent learning techniques"--Provided by publisher.