Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Neural Networks For Perception
Download Neural Networks For Perception full books in PDF, epub, and Kindle. Read online Neural Networks For Perception ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Computation, Learning, and Architectures by :
Download or read book Computation, Learning, and Architectures written by and published by . This book was released on 1992 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Deep Learning for Robot Perception and Cognition by : Alexandros Iosifidis
Download or read book Deep Learning for Robot Perception and Cognition written by Alexandros Iosifidis and published by Academic Press. This book was released on 2022-02-04 with total page 638 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep Learning for Robot Perception and Cognition introduces a broad range of topics and methods in deep learning for robot perception and cognition together with end-to-end methodologies. The book provides the conceptual and mathematical background needed for approaching a large number of robot perception and cognition tasks from an end-to-end learning point-of-view. The book is suitable for students, university and industry researchers and practitioners in Robotic Vision, Intelligent Control, Mechatronics, Deep Learning, Robotic Perception and Cognition tasks. - Presents deep learning principles and methodologies - Explains the principles of applying end-to-end learning in robotics applications - Presents how to design and train deep learning models - Shows how to apply deep learning in robot vision tasks such as object recognition, image classification, video analysis, and more - Uses robotic simulation environments for training deep learning models - Applies deep learning methods for different tasks ranging from planning and navigation to biosignal analysis
Book Synopsis Modelling Perception with Artificial Neural Networks by : Colin R. Tosh
Download or read book Modelling Perception with Artificial Neural Networks written by Colin R. Tosh and published by Cambridge University Press. This book was released on 2010-06-24 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: Studies of the evolution of animal signals and sensory behaviour have more recently shifted from considering 'extrinsic' (environmental) determinants to 'intrinsic' (physiological) ones. The drive behind this change has been the increasing availability of neural network models. With contributions from experts in the field, this book provides a complete survey of artificial neural networks. The book opens with two broad, introductory level reviews on the themes of the book: neural networks as tools to explore the nature of perceptual mechanisms, and neural networks as models of perception in ecology and evolutionary biology. Later chapters expand on these themes and address important methodological issues when applying artificial neural networks to study perception. The final chapter provides perspective by introducing a neural processing system in a real animal. The book provides the foundations for implementing artificial neural networks, for those new to the field, along with identifying potential research areas for specialists.
Book Synopsis Fuzzy Neural Network Theory and Application by : Puyin Liu
Download or read book Fuzzy Neural Network Theory and Application written by Puyin Liu and published by World Scientific. This book was released on 2004 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book systematically synthesizes research achievements in the field of fuzzy neural networks in recent years. It also provides a comprehensive presentation of the developments in fuzzy neural networks, with regard to theory as well as their application to system modeling and image restoration. Special emphasis is placed on the fundamental concepts and architecture analysis of fuzzy neural networks. The book is unique in treating all kinds of fuzzy neural networks and their learning algorithms and universal approximations, and employing simulation examples which are carefully designed to help the reader grasp the underlying theory. This is a valuable reference for scientists and engineers working in mathematics, computer science, control or other fields related to information processing. It can also be used as a textbook for graduate courses in applied mathematics, computer science, automatic control and electrical engineering. Contents: Fuzzy Neural Networks for Storing and Classifying; Fuzzy Associative Memory OCo Feedback Networks; Regular Fuzzy Neural Networks; Polygonal Fuzzy Neural Networks; Approximation Analysis of Fuzzy Systems; Stochastic Fuzzy Systems and Approximations; Application of FNN to Image Restoration. Readership: Scientists, engineers and graduate students in applied mathematics, computer science, automatic control and information processing."
Book Synopsis Neural Network Perception for Mobile Robot Guidance by : Dean A. Pomerleau
Download or read book Neural Network Perception for Mobile Robot Guidance written by Dean A. Pomerleau and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 199 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dean Pomerleau's trainable road tracker, ALVINN, is arguably the world's most famous neural net application. It currently holds the world's record for distance traveled by an autonomous robot without interruption: 21.2 miles along a highway, in traffic, at speedsofup to 55 miles per hour. Pomerleau's work has received worldwide attention, including articles in Business Week (March 2, 1992), Discover (July, 1992), and German and Japanese science magazines. It has been featured in two PBS series, "The Machine That Changed the World" and "By the Year 2000," and appeared in news segments on CNN, the Canadian news and entertainment program "Live It Up", and the Danish science program "Chaos". What makes ALVINN especially appealing is that it does not merely drive - it learns to drive, by watching a human driver for roughly five minutes. The training inputstothe neural networkare a video imageoftheroad ahead and thecurrentposition of the steering wheel. ALVINN has learned to drive on single lane, multi-lane, and unpaved roads. It rapidly adapts to other sensors: it learned to drive at night using laser reflectance imaging, and by using a laser rangefinder it learned to swerve to avoid obstacles and maintain a fixed distance from a row of parked cars. It has even learned to drive backwards.
Download or read book Vision written by Jeanny Hrault and published by World Scientific. This book was released on 2010 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: At the fascinating frontiers of neurobiology, mathematics and psychophysics, this book addresses the problem of human and computer vision on the basis of cognitive modeling. After recalling the physics of light and its transformation through media and optics, Hrault presents the principles of the primate's visual system in terms of anatomy and functionality. Then, the neuronal circuitry of the retina is analyzed in terms of spatio?temporal filtering. This basic model is extended to the concept of neuromorphic circuits for motion processing and to the processing of color in the retina. For more in-depth studies, the adaptive non-linear properties of the photoreceptors and of ganglion cells are addressed, exhibiting all the power of the retinal pre-processing of images as a system of information cleaning suitable for further cortical processing. As a target of retinal information, the primary visual area is presented as a bank of filters able to extract valuable descriptors of images, suitable for categorization and recognition and also for local information extraction such as saliency and perspective. All along the book, many comparisons between the models and human perception are discussed as well as detailed applications to computer vision.
Book Synopsis Analogy-making as Perception by : Melanie Mitchell
Download or read book Analogy-making as Perception written by Melanie Mitchell and published by Bradford Book. This book was released on 1993 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The psychologist William James observed that "a native talent for perceiving analogies is... the leading fact in genius of every order." The centrality and the ubiquity of analogy in creative thought have been noted again and again by scientists, artists, and writers, and understanding and modeling analogical thought have emerged as two of the most important challenges for cognitive science.Analogy-Making as Perception is based on the premise that analogy-making is fundamentally a high-level perceptual process in which the interaction of perception and concepts gives rise to "conceptual slippages" which allow analogies to be made. It describes Copycat - a computer model of analogymaking, developed by the author with Douglas Hofstadter, that models the complex, subconscious interaction between perception and concepts that underlies the creation of analogies.In Copycat, both concepts and high-level perception are emergent phenomena, arising from large numbers of low-level, parallel, non-deterministic activities. In the spectrum of cognitive modeling approaches, Copycat occupies a unique intermediate position between symbolic systems and connectionist systems a position that is at present the most useful one for understanding the fluidity of concepts and high-level perception.On one level the work described here is about analogy-making, but on another level it is about cognition in general. It explores such issues as the nature of concepts and perception and the emergence of highly flexible concepts from a lower-level "subcognitive" substrate.Melanie Mitchell, Assistant Professor in the Department of Electrical Engineering and Computer Science at the University of Michigan, is a Fellow of the Michigan Society of Fellows. She is also Director of the Adaptive Computation Program at the Santa Fe Institute.
Book Synopsis Probabilistic Models of the Brain by : Rajesh P.N. Rao
Download or read book Probabilistic Models of the Brain written by Rajesh P.N. Rao and published by MIT Press. This book was released on 2002-03-29 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: A survey of probabilistic approaches to modeling and understanding brain function. Neurophysiological, neuroanatomical, and brain imaging studies have helped to shed light on how the brain transforms raw sensory information into a form that is useful for goal-directed behavior. A fundamental question that is seldom addressed by these studies, however, is why the brain uses the types of representations it does and what evolutionary advantage, if any, these representations confer. It is difficult to address such questions directly via animal experiments. A promising alternative is to use probabilistic principles such as maximum likelihood and Bayesian inference to derive models of brain function. This book surveys some of the current probabilistic approaches to modeling and understanding brain function. Although most of the examples focus on vision, many of the models and techniques are applicable to other modalities as well. The book presents top-down computational models as well as bottom-up neurally motivated models of brain function. The topics covered include Bayesian and information-theoretic models of perception, probabilistic theories of neural coding and spike timing, computational models of lateral and cortico-cortical feedback connections, and the development of receptive field properties from natural signals.
Book Synopsis Machine Learning And Perception by : Guido Tascini
Download or read book Machine Learning And Perception written by Guido Tascini and published by World Scientific. This book was released on 1996-05-06 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: As perception stands for the acquisition of a real world representation by interaction with an environment, learning is the modification of this internal representation.This book highlights the relation between perception and learning and describes the influence of the learning in the interaction with the environment.Besides, this volume contains a series of applications of both machine learning and perception, where the former is often embedded in the latter and vice-versa.Among the topics covered, there are visual perception for autonomous robots, model generation of visual patterns, attentional reasoning, genetic approaches and various categories of neural networks.
Book Synopsis Neural Networks for Perception by : Harry Wechsler
Download or read book Neural Networks for Perception written by Harry Wechsler and published by . This book was released on 1992 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Neural Networks and Systolic Array Design by : Sankar K. Pal
Download or read book Neural Networks and Systolic Array Design written by Sankar K. Pal and published by World Scientific. This book was released on 2002 with total page 421 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural networks (NNs) and systolic arrays (SAs) have many similar features. This volume describes, in a unified way, the basic concepts, theories and characteristic features of integrating or formulating different facets of NNs and SAs, as well as presents recent developments and significant applications. The articles, written by experts from all over the world, demonstrate the various ways this integration can be made to efficiently design methodologies, algorithms and architectures, and also implementations, for NN applications. The book will be useful to graduate students and researchers in many related areas, not only as a reference book but also as a textbook for some parts of the curriculum. It will also benefit researchers and practitioners in industry and R&D laboratories who are working in the fields of system design, VLSI, parallel processing, neural networks, and vision.
Book Synopsis Integration of Swarm Intelligence and Artificial Neural Network by : Satchidananda Dehuri
Download or read book Integration of Swarm Intelligence and Artificial Neural Network written by Satchidananda Dehuri and published by World Scientific. This book was released on 2011 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a new forum for the dissemination of knowledge in both theoretical and applied research on swarm intelligence (SI) and artificial neural network (ANN). It accelerates interaction between the two bodies of knowledge and fosters a unified development in the next generation of computational model for machine learning. To the best of our knowledge, the integration of SI and ANN is the first attempt to integrate various aspects of both the independent research area into a single volume.
Book Synopsis Hierarchical Neural Networks for Image Interpretation by : Sven Behnke
Download or read book Hierarchical Neural Networks for Image Interpretation written by Sven Behnke and published by Springer. This book was released on 2003-11-18 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: Human performance in visual perception by far exceeds the performance of contemporary computer vision systems. While humans are able to perceive their environment almost instantly and reliably under a wide range of conditions, computer vision systems work well only under controlled conditions in limited domains. This book sets out to reproduce the robustness and speed of human perception by proposing a hierarchical neural network architecture for iterative image interpretation. The proposed architecture can be trained using unsupervised and supervised learning techniques. Applications of the proposed architecture are illustrated using small networks. Furthermore, several larger networks were trained to perform various nontrivial computer vision tasks.
Book Synopsis Neural Networks for Perception by : Harry Wechsler
Download or read book Neural Networks for Perception written by Harry Wechsler and published by Academic Press. This book was released on 2014-05-10 with total page 543 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural Networks for Perception, Volume 1: Human and Machine Perception focuses on models for understanding human perception in terms of distributed computation and examples of PDP models for machine perception. This book addresses both theoretical and practical issues related to the feasibility of both explaining human perception and implementing machine perception in terms of neural network models. The book is organized into two parts. The first part focuses on human perception. Topics on network model of object recognition in human vision, the self-organization of functional architecture in the cerebral cortex, and the structure and interpretation of neuronal codes in the visual system are detailed under this part. Part two covers the relevance of neural networks for machine perception. Subjects considered under this section include the multi-dimensional linear lattice for Fourier and Gabor transforms, multiple- scale Gaussian filtering, and edge detection; aspects of invariant pattern and object recognition; and neural network for motion processing. Neuroscientists, computer scientists, engineers, and researchers in artificial intelligence will find the book useful.
Book Synopsis The Handbook of Brain Theory and Neural Networks by : Michael A. Arbib
Download or read book The Handbook of Brain Theory and Neural Networks written by Michael A. Arbib and published by MIT Press. This book was released on 2003 with total page 1328 pages. Available in PDF, EPUB and Kindle. Book excerpt: This second edition presents the enormous progress made in recent years in the many subfields related to the two great questions : how does the brain work? and, How can we build intelligent machines? This second edition greatly increases the coverage of models of fundamental neurobiology, cognitive neuroscience, and neural network approaches to language. (Midwest).
Book Synopsis Neural Network Principles by : Robert L. Harvey
Download or read book Neural Network Principles written by Robert L. Harvey and published by . This book was released on 1994 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: Using models of biological systems as springboards to a broad range of applications, this volume presents the basic ideas of neural networks in mathematical form. Comprehensive in scope, Neural Network Principles outlines the structure of the human brain, explains the physics of neurons, derives the standard neuron state equations, and presents the consequences of these mathematical models. Author Robert L. Harvey derives a set of simple networks that can filter, recall, switch, amplify, and recognize input signals that are all patterns of neuron activation. The author also discusses properties of general interconnected neuron groups, including the well-known Hopfield and perception neural networks using a unified approach along with suggestions of new design procedures for both. He then applies the theory to synthesize artificial neural networks for specialized tasks. In addition, Neural Network Principles outlines the design of machine vision systems, explores motor control of the human brain and presents two examples of artificial hand-eye systems, demonstrates how to solve large systems of interconnected neurons, and considers control and modulation in the human brain-mind with insights for a new understanding of many mental illnesses.
Book Synopsis Neural Networks for Perception by : Harry Wechsler
Download or read book Neural Networks for Perception written by Harry Wechsler and published by Academic Press. This book was released on 2014-05-10 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural Networks for Perception, Volume 2: Computation, Learning, and Architectures explores the computational and adaptation problems related to the use of neuronal systems, and the corresponding hardware architectures capable of implementing neural networks for perception and of coping with the complexity inherent in massively distributed computation. This book addresses both theoretical and practical issues related to the feasibility of both explaining human perception and implementing machine perception in terms of neural network models. The text is organized into two sections. The first section, computation and learning, discusses topics on learning visual behaviors, some of the elementary theory of the basic backpropagation neural network architecture, and computation and learning in the context of neural network capacity. The second section is on hardware architecture. The chapters included in this part of the book describe the architectures and possible applications of recent neurocomputing models. The Cohen-Grossberg model of associative memory, hybrid optical/digital architectures for neorocomputing, and electronic circuits for adaptive synapses are some of the subjects elucidated. Neuroscientists, computer scientists, engineers, and researchers in artificial intelligence will find the book useful.