Neural Networks for Optimization and Signal Processing

Download Neural Networks for Optimization and Signal Processing PDF Online Free

Author :
Publisher :
ISBN 13 : 9783519064442
Total Pages : 526 pages
Book Rating : 4.0/5 (644 download)

DOWNLOAD NOW!


Book Synopsis Neural Networks for Optimization and Signal Processing by : Andrzej Cichocki

Download or read book Neural Networks for Optimization and Signal Processing written by Andrzej Cichocki and published by . This book was released on 1993-01 with total page 526 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Neural Networks for Optimization and Signal Processing

Download Neural Networks for Optimization and Signal Processing PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 :
Total Pages : 578 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Neural Networks for Optimization and Signal Processing by : Andrzej Cichocki

Download or read book Neural Networks for Optimization and Signal Processing written by Andrzej Cichocki and published by John Wiley & Sons. This book was released on 1993-06-07 with total page 578 pages. Available in PDF, EPUB and Kindle. Book excerpt: A topical introduction on the ability of artificial neural networks to not only solve on-line a wide range of optimization problems but also to create new techniques and architectures. Provides in-depth coverage of mathematical modeling along with illustrative computer simulation results.

Neural Networks for Intelligent Signal Processing

Download Neural Networks for Intelligent Signal Processing PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9812383050
Total Pages : 510 pages
Book Rating : 4.8/5 (123 download)

DOWNLOAD NOW!


Book Synopsis Neural Networks for Intelligent Signal Processing by : Anthony Zaknich

Download or read book Neural Networks for Intelligent Signal Processing written by Anthony Zaknich and published by World Scientific. This book was released on 2003 with total page 510 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a thorough theoretical and practical introduction to the application of neural networks to pattern recognition and intelligent signal processing. It has been tested on students, unfamiliar with neural networks, who were able to pick up enough details to successfully complete their masters or final year undergraduate projects. The text also presents a comprehensive treatment of a class of neural networks called common bandwidth spherical basis function NNs, including the probabilistic NN, the modified probabilistic NN and the general regression NN.

Handbook of Neural Network Signal Processing

Download Handbook of Neural Network Signal Processing PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1420038613
Total Pages : 408 pages
Book Rating : 4.4/5 (2 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Neural Network Signal Processing by : Yu Hen Hu

Download or read book Handbook of Neural Network Signal Processing written by Yu Hen Hu and published by CRC Press. This book was released on 2018-10-03 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: The use of neural networks is permeating every area of signal processing. They can provide powerful means for solving many problems, especially in nonlinear, real-time, adaptive, and blind signal processing. The Handbook of Neural Network Signal Processing brings together applications that were previously scattered among various publications to provide an up-to-date, detailed treatment of the subject from an engineering point of view. The authors cover basic principles, modeling, algorithms, architectures, implementation procedures, and well-designed simulation examples of audio, video, speech, communication, geophysical, sonar, radar, medical, and many other signals. The subject of neural networks and their application to signal processing is constantly improving. You need a handy reference that will inform you of current applications in this new area. The Handbook of Neural Network Signal Processing provides this much needed service for all engineers and scientists in the field.

Cellular Neural Networks

Download Cellular Neural Networks PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1475732201
Total Pages : 155 pages
Book Rating : 4.4/5 (757 download)

DOWNLOAD NOW!


Book Synopsis Cellular Neural Networks by : Martin Hänggi

Download or read book Cellular Neural Networks written by Martin Hänggi and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 155 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cellular Neural Networks (CNNs) constitute a class of nonlinear, recurrent and locally coupled arrays of identical dynamical cells that operate in parallel. ANALOG chips are being developed for use in applications where sophisticated signal processing at low power consumption is required. Signal processing via CNNs only becomes efficient if the network is implemented in analog hardware. In view of the physical limitations that analog implementations entail, robust operation of a CNN chip with respect to parameter variations has to be insured. By far not all mathematically possible CNN tasks can be carried out reliably on an analog chip; some of them are inherently too sensitive. This book defines a robustness measure to quantify the degree of robustness and proposes an exact and direct analytical design method for the synthesis of optimally robust network parameters. The method is based on a design centering technique which is generally applicable where linear constraints have to be satisfied in an optimum way. Processing speed is always crucial when discussing signal-processing devices. In the case of the CNN, it is shown that the setting time can be specified in closed analytical expressions, which permits, on the one hand, parameter optimization with respect to speed and, on the other hand, efficient numerical integration of CNNs. Interdependence between robustness and speed issues are also addressed. Another goal pursued is the unification of the theory of continuous-time and discrete-time systems. By means of a delta-operator approach, it is proven that the same network parameters can be used for both of these classes, even if their nonlinear output functions differ. More complex CNN optimization problems that cannot be solved analytically necessitate resorting to numerical methods. Among these, stochastic optimization techniques such as genetic algorithms prove their usefulness, for example in image classification problems. Since the inception of the CNN, the problem of finding the network parameters for a desired task has been regarded as a learning or training problem, and computationally expensive methods derived from standard neural networks have been applied. Furthermore, numerous useful parameter sets have been derived by intuition. In this book, a direct and exact analytical design method for the network parameters is presented. The approach yields solutions which are optimum with respect to robustness, an aspect which is crucial for successful implementation of the analog CNN hardware that has often been neglected. `This beautifully rounded work provides many interesting and useful results, for both CNN theorists and circuit designers.' Leon O. Chua

Neural Networks for Signal Processing

Download Neural Networks for Signal Processing PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 424 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Neural Networks for Signal Processing by : Bart Kosko

Download or read book Neural Networks for Signal Processing written by Bart Kosko and published by . This book was released on 1992 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: Edited by a leading expert in neural networks, this collection of essays explores neural network applications in signal and image processing, function and estimation, robotics and control, associative memories, and electrical and optical neural networks. This reference will be of interest to scientists, engineers, and others working in the neural network field.

Applied Neural Networks for Signal Processing

Download Applied Neural Networks for Signal Processing PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521563918
Total Pages : 381 pages
Book Rating : 4.5/5 (639 download)

DOWNLOAD NOW!


Book Synopsis Applied Neural Networks for Signal Processing by : Fa-Long Luo

Download or read book Applied Neural Networks for Signal Processing written by Fa-Long Luo and published by Cambridge University Press. This book was released on 1997-06-13 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: The use of neural networks in signal processing is becoming increasingly widespread, with applications in many areas. Applied Neural Networks for Signal Processing is the first book to provide a comprehensive introduction to this broad field. It begins by covering the basic principles and models of neural networks in signal processing. The authors then discuss a number of powerful algorithms and architectures for a range of important problems, and describe practical implementation procedures. A key feature of the book is that many carefully designed simulation examples are included to help guide the reader in the development of systems for new applications. The book will be an invaluable reference for scientists and engineers working in communications, control or any other field related to signal processing. It can also be used as a textbook for graduate courses in electrical engineering and computer science.

Process Neural Networks

Download Process Neural Networks PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540737626
Total Pages : 240 pages
Book Rating : 4.5/5 (47 download)

DOWNLOAD NOW!


Book Synopsis Process Neural Networks by : Xingui He

Download or read book Process Neural Networks written by Xingui He and published by Springer Science & Business Media. This book was released on 2010-07-05 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: For the first time, this book sets forth the concept and model for a process neural network. You’ll discover how a process neural network expands the mapping relationship between the input and output of traditional neural networks and greatly enhances the expression capability of artificial neural networks. Detailed illustrations help you visualize information processing flow and the mapping relationship between inputs and outputs.

Modeling and Optimization of Signals Using Machine Learning Techniques

Download Modeling and Optimization of Signals Using Machine Learning Techniques PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119847699
Total Pages : 421 pages
Book Rating : 4.1/5 (198 download)

DOWNLOAD NOW!


Book Synopsis Modeling and Optimization of Signals Using Machine Learning Techniques by : Chandra Singh

Download or read book Modeling and Optimization of Signals Using Machine Learning Techniques written by Chandra Singh and published by John Wiley & Sons. This book was released on 2024-08-23 with total page 421 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explore the power of machine learning to revolutionize signal processing and optimization with cutting-edge techniques and practical insights in this outstanding new volume from Scrivener Publishing. Modeling and Optimization of Signals using Machine Learning Techniques is designed for researchers from academia, industries, and R&D organizations worldwide who are passionate about advancing machine learning methods, signal processing theory, data mining, artificial intelligence, and optimization. This book addresses the role of machine learning in transforming vast signal databases from sensor networks, internet services, and communication systems into actionable decision systems. It explores the development of computational solutions and novel models to handle complex real-world signals such as speech, music, biomedical data, and multimedia. Through comprehensive coverage of cutting-edge techniques, this book equips readers with the tools to automate signal processing and analysis, ultimately enhancing the retrieval of valuable information from extensive data storage systems. By providing both theoretical insights and practical guidance, the book serves as a comprehensive resource for researchers, engineers, and practitioners aiming to harness the power of machine learning in signal processing. Whether for the veteran engineer, scientist in the lab, student, or faculty, this groundbreaking new volume is a valuable resource for researchers and other industry professionals interested in the intersection of technology and agriculture.

Neural Advances in Processing Nonlinear Dynamic Signals

Download Neural Advances in Processing Nonlinear Dynamic Signals PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319950983
Total Pages : 313 pages
Book Rating : 4.3/5 (199 download)

DOWNLOAD NOW!


Book Synopsis Neural Advances in Processing Nonlinear Dynamic Signals by : Anna Esposito

Download or read book Neural Advances in Processing Nonlinear Dynamic Signals written by Anna Esposito and published by Springer. This book was released on 2018-07-21 with total page 313 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book proposes neural networks algorithms and advanced machine learning techniques for processing nonlinear dynamic signals such as audio, speech, financial signals, feedback loops, waveform generation, filtering, equalization, signals from arrays of sensors, and perturbations in the automatic control of industrial production processes. It also discusses the drastic changes in financial, economic, and work processes that are currently being experienced by the computational and engineering sciences community. Addresses key aspects, such as the integration of neural algorithms and procedures for the recognition, the analysis and detection of dynamic complex structures and the implementation of systems for discovering patterns in data, the book highlights the commonalities between computational intelligence (CI) and information and communications technologies (ICT) to promote transversal skills and sophisticated processing techniques. This book is a valuable resource for a. The academic research community b. The ICT market c. PhD students and early stage researchers d. Companies, research institutes e. Representatives from industry and standardization bodies

Neural Information Processing and VLSI

Download Neural Information Processing and VLSI PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461522471
Total Pages : 569 pages
Book Rating : 4.4/5 (615 download)

DOWNLOAD NOW!


Book Synopsis Neural Information Processing and VLSI by : Bing J. Sheu

Download or read book Neural Information Processing and VLSI written by Bing J. Sheu and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 569 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural Information Processing and VLSI provides a unified treatment of this important subject for use in classrooms, industry, and research laboratories, in order to develop advanced artificial and biologically-inspired neural networks using compact analog and digital VLSI parallel processing techniques. Neural Information Processing and VLSI systematically presents various neural network paradigms, computing architectures, and the associated electronic/optical implementations using efficient VLSI design methodologies. Conventional digital machines cannot perform computationally-intensive tasks with satisfactory performance in such areas as intelligent perception, including visual and auditory signal processing, recognition, understanding, and logical reasoning (where the human being and even a small living animal can do a superb job). Recent research advances in artificial and biological neural networks have established an important foundation for high-performance information processing with more efficient use of computing resources. The secret lies in the design optimization at various levels of computing and communication of intelligent machines. Each neural network system consists of massively paralleled and distributed signal processors with every processor performing very simple operations, thus consuming little power. Large computational capabilities of these systems in the range of some hundred giga to several tera operations per second are derived from collectively parallel processing and efficient data routing, through well-structured interconnection networks. Deep-submicron very large-scale integration (VLSI) technologies can integrate tens of millions of transistors in a single silicon chip for complex signal processing and information manipulation. The book is suitable for those interested in efficient neurocomputing as well as those curious about neural network system applications. It has been especially prepared for use as a text for advanced undergraduate and first year graduate students, and is an excellent reference book for researchers and scientists working in the fields covered.

Neural Networks for Signal Processing

Download Neural Networks for Signal Processing PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (613 download)

DOWNLOAD NOW!


Book Synopsis Neural Networks for Signal Processing by :

Download or read book Neural Networks for Signal Processing written by and published by . This book was released on with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Machine Learning

Download Machine Learning PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0128188049
Total Pages : 1160 pages
Book Rating : 4.1/5 (281 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning by : Sergios Theodoridis

Download or read book Machine Learning written by Sergios Theodoridis and published by Academic Press. This book was released on 2020-02-19 with total page 1160 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine Learning: A Bayesian and Optimization Perspective, 2nd edition, gives a unified perspective on machine learning by covering both pillars of supervised learning, namely regression and classification. The book starts with the basics, including mean square, least squares and maximum likelihood methods, ridge regression, Bayesian decision theory classification, logistic regression, and decision trees. It then progresses to more recent techniques, covering sparse modelling methods, learning in reproducing kernel Hilbert spaces and support vector machines, Bayesian inference with a focus on the EM algorithm and its approximate inference variational versions, Monte Carlo methods, probabilistic graphical models focusing on Bayesian networks, hidden Markov models and particle filtering. Dimensionality reduction and latent variables modelling are also considered in depth. This palette of techniques concludes with an extended chapter on neural networks and deep learning architectures. The book also covers the fundamentals of statistical parameter estimation, Wiener and Kalman filtering, convexity and convex optimization, including a chapter on stochastic approximation and the gradient descent family of algorithms, presenting related online learning techniques as well as concepts and algorithmic versions for distributed optimization. Focusing on the physical reasoning behind the mathematics, without sacrificing rigor, all the various methods and techniques are explained in depth, supported by examples and problems, giving an invaluable resource to the student and researcher for understanding and applying machine learning concepts. Most of the chapters include typical case studies and computer exercises, both in MATLAB and Python. The chapters are written to be as self-contained as possible, making the text suitable for different courses: pattern recognition, statistical/adaptive signal processing, statistical/Bayesian learning, as well as courses on sparse modeling, deep learning, and probabilistic graphical models. New to this edition: Complete re-write of the chapter on Neural Networks and Deep Learning to reflect the latest advances since the 1st edition. The chapter, starting from the basic perceptron and feed-forward neural networks concepts, now presents an in depth treatment of deep networks, including recent optimization algorithms, batch normalization, regularization techniques such as the dropout method, convolutional neural networks, recurrent neural networks, attention mechanisms, adversarial examples and training, capsule networks and generative architectures, such as restricted Boltzman machines (RBMs), variational autoencoders and generative adversarial networks (GANs). Expanded treatment of Bayesian learning to include nonparametric Bayesian methods, with a focus on the Chinese restaurant and the Indian buffet processes. Presents the physical reasoning, mathematical modeling and algorithmic implementation of each method Updates on the latest trends, including sparsity, convex analysis and optimization, online distributed algorithms, learning in RKH spaces, Bayesian inference, graphical and hidden Markov models, particle filtering, deep learning, dictionary learning and latent variables modeling Provides case studies on a variety of topics, including protein folding prediction, optical character recognition, text authorship identification, fMRI data analysis, change point detection, hyperspectral image unmixing, target localization, and more

Nonlinear Dynamical Systems

Download Nonlinear Dynamical Systems PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 9780471349112
Total Pages : 316 pages
Book Rating : 4.3/5 (491 download)

DOWNLOAD NOW!


Book Synopsis Nonlinear Dynamical Systems by : Irwin W. Sandberg

Download or read book Nonlinear Dynamical Systems written by Irwin W. Sandberg and published by John Wiley & Sons. This book was released on 2001-02-21 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sechs erfahrene Autoren beschreiben in diesem Band ein Spezialgebiet der neuronalen Netze mit Anwendungen in der Signalsteuerung, Signalverarbeitung und Zeitreihenanalyse. Ein zeitgemäßer Beitrag zur Behandlung nichtlinear-dynamischer Systeme!

Machine and Deep Learning Algorithms and Applications

Download Machine and Deep Learning Algorithms and Applications PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031037588
Total Pages : 107 pages
Book Rating : 4.0/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Machine and Deep Learning Algorithms and Applications by : Uday Shankar

Download or read book Machine and Deep Learning Algorithms and Applications written by Uday Shankar and published by Springer Nature. This book was released on 2022-05-31 with total page 107 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces basic machine learning concepts and applications for a broad audience that includes students, faculty, and industry practitioners. We begin by describing how machine learning provides capabilities to computers and embedded systems to learn from data. A typical machine learning algorithm involves training, and generally the performance of a machine learning model improves with more training data. Deep learning is a sub-area of machine learning that involves extensive use of layers of artificial neural networks typically trained on massive amounts of data. Machine and deep learning methods are often used in contemporary data science tasks to address the growing data sets and detect, cluster, and classify data patterns. Although machine learning commercial interest has grown relatively recently, the roots of machine learning go back to decades ago. We note that nearly all organizations, including industry, government, defense, and health, are using machine learning to address a variety of needs and applications. The machine learning paradigms presented can be broadly divided into the following three categories: supervised learning, unsupervised learning, and semi-supervised learning. Supervised learning algorithms focus on learning a mapping function, and they are trained with supervision on labeled data. Supervised learning is further sub-divided into classification and regression algorithms. Unsupervised learning typically does not have access to ground truth, and often the goal is to learn or uncover the hidden pattern in the data. Through semi-supervised learning, one can effectively utilize a large volume of unlabeled data and a limited amount of labeled data to improve machine learning model performances. Deep learning and neural networks are also covered in this book. Deep neural networks have attracted a lot of interest during the last ten years due to the availability of graphics processing units (GPU) computational power, big data, and new software platforms. They have strong capabilities in terms of learning complex mapping functions for different types of data. We organize the book as follows. The book starts by introducing concepts in supervised, unsupervised, and semi-supervised learning. Several algorithms and their inner workings are presented within these three categories. We then continue with a brief introduction to artificial neural network algorithms and their properties. In addition, we cover an array of applications and provide extensive bibliography. The book ends with a summary of the key machine learning concepts.

Learning Approaches in Signal Processing

Download Learning Approaches in Signal Processing PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 0429592264
Total Pages : 678 pages
Book Rating : 4.4/5 (295 download)

DOWNLOAD NOW!


Book Synopsis Learning Approaches in Signal Processing by : Wan-Chi Siu

Download or read book Learning Approaches in Signal Processing written by Wan-Chi Siu and published by CRC Press. This book was released on 2018-12-07 with total page 678 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents an up-to-date tutorial and overview on learning technologies such as random forests, sparsity, and low-rank matrix estimation and cutting-edge visual/signal processing techniques, including face recognition, Kalman filtering, and multirate DSP. It discusses the applications that make use of deep learning, convolutional neural networks, random forests, etc.

Neural Networks and Statistical Learning

Download Neural Networks and Statistical Learning PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 1447174526
Total Pages : 988 pages
Book Rating : 4.4/5 (471 download)

DOWNLOAD NOW!


Book Synopsis Neural Networks and Statistical Learning by : Ke-Lin Du

Download or read book Neural Networks and Statistical Learning written by Ke-Lin Du and published by Springer Nature. This book was released on 2019-09-12 with total page 988 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a broad yet detailed introduction to neural networks and machine learning in a statistical framework. A single, comprehensive resource for study and further research, it explores the major popular neural network models and statistical learning approaches with examples and exercises and allows readers to gain a practical working understanding of the content. This updated new edition presents recently published results and includes six new chapters that correspond to the recent advances in computational learning theory, sparse coding, deep learning, big data and cloud computing. Each chapter features state-of-the-art descriptions and significant research findings. The topics covered include: • multilayer perceptron; • the Hopfield network; • associative memory models;• clustering models and algorithms; • t he radial basis function network; • recurrent neural networks; • nonnegative matrix factorization; • independent component analysis; •probabilistic and Bayesian networks; and • fuzzy sets and logic. Focusing on the prominent accomplishments and their practical aspects, this book provides academic and technical staff, as well as graduate students and researchers with a solid foundation and comprehensive reference on the fields of neural networks, pattern recognition, signal processing, and machine learning.