Navier-stokes Equations In Planar Domains

Download Navier-stokes Equations In Planar Domains PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 1783263016
Total Pages : 315 pages
Book Rating : 4.7/5 (832 download)

DOWNLOAD NOW!


Book Synopsis Navier-stokes Equations In Planar Domains by : Matania Ben-artzi

Download or read book Navier-stokes Equations In Planar Domains written by Matania Ben-artzi and published by World Scientific. This book was released on 2013-03-07 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume deals with the classical Navier-Stokes system of equations governing the planar flow of incompressible, viscid fluid. It is a first-of-its-kind book, devoted to all aspects of the study of such flows, ranging from theoretical to numerical, including detailed accounts of classical test problems such as “driven cavity” and “double-driven cavity”.A comprehensive treatment of the mathematical theory developed in the last 15 years is elaborated, heretofore never presented in other books. It gives a detailed account of the modern compact schemes based on a “pure streamfunction” approach. In particular, a complete proof of convergence is given for the full nonlinear problem.This volume aims to present a variety of numerical test problems. It is therefore well positioned as a reference for both theoretical and applied mathematicians, as well as a text that can be used by graduate students pursuing studies in (pure or applied) mathematics, fluid dynamics and mathematical physics./a

An Introduction to the Mathematical Theory of the Navier-Stokes Equations

Download An Introduction to the Mathematical Theory of the Navier-Stokes Equations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387096205
Total Pages : 1026 pages
Book Rating : 4.3/5 (87 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to the Mathematical Theory of the Navier-Stokes Equations by : Giovanni Galdi

Download or read book An Introduction to the Mathematical Theory of the Navier-Stokes Equations written by Giovanni Galdi and published by Springer Science & Business Media. This book was released on 2011-07-12 with total page 1026 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides a comprehensive, detailed and self-contained treatment of the fundamental mathematical properties of boundary-value problems related to the Navier-Stokes equations. These properties include existence, uniqueness and regularity of solutions in bounded as well as unbounded domains. Whenever the domain is unbounded, the asymptotic behavior of solutions is also investigated. This book is the new edition of the original two volume book, under the same title, published in 1994. In this new edition, the two volumes have merged into one and two more chapters on steady generalized oseen flow in exterior domains and steady Navier–Stokes flow in three-dimensional exterior domains have been added. Most of the proofs given in the previous edition were also updated. An introductory first chapter describes all relevant questions treated in the book and lists and motivates a number of significant and still open questions. It is written in an expository style so as to be accessible also to non-specialists.Each chapter is preceded by a substantial, preliminary discussion of the problems treated, along with their motivation and the strategy used to solve them. Also, each chapter ends with a section dedicated to alternative approaches and procedures, as well as historical notes. The book contains more than 400 stimulating exercises, at different levels of difficulty, that will help the junior researcher and the graduate student to gradually become accustomed with the subject. Finally, the book is endowed with a vast bibliography that includes more than 500 items. Each item brings a reference to the section of the book where it is cited. The book will be useful to researchers and graduate students in mathematics in particular mathematical fluid mechanics and differential equations. Review of First Edition, First Volume: “The emphasis of this book is on an introduction to the mathematical theory of the stationary Navier-Stokes equations. It is written in the style of a textbook and is essentially self-contained. The problems are presented clearly and in an accessible manner. Every chapter begins with a good introductory discussion of the problems considered, and ends with interesting notes on different approaches developed in the literature. Further, stimulating exercises are proposed. (Mathematical Reviews, 1995)

Semigroups of Operators: Theory and Applications

Download Semigroups of Operators: Theory and Applications PDF Online Free

Author :
Publisher : Birkhäuser
ISBN 13 : 3034884176
Total Pages : 376 pages
Book Rating : 4.0/5 (348 download)

DOWNLOAD NOW!


Book Synopsis Semigroups of Operators: Theory and Applications by : A.V. Balakrishnan

Download or read book Semigroups of Operators: Theory and Applications written by A.V. Balakrishnan and published by Birkhäuser. This book was released on 2012-12-06 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: These Proceedings comprise the bulk of the papers presented at the Inter national Conference on Semigroups of Opemtors: Theory and Contro~ held 14-18 December 1998, Newport Beach, California, U.S.A. The intent of the Conference was to highlight recent advances in the the ory of Semigroups of Operators which provides the abstract framework for the time-domain solutions of time-invariant boundary-value/initial-value problems of partial differential equations. There is of course a firewall between the ab stract theory and the applications and one of the Conference aims was to bring together both in the hope that it may be of value to both communities. In these days when all scientific activity is judged by its value on "dot com" it is not surprising that mathematical analysis that holds no promise of an immediate commercial product-line, or even a software tool-box, is not high in research priority. We are particularly pleased therefore that the National Science Foundation provided generous financial support without which this Conference would have been impossible to organize. Our special thanks to Dr. Kishan Baheti, Program Manager.

The Navier-Stokes Equations

Download The Navier-Stokes Equations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3034805519
Total Pages : 376 pages
Book Rating : 4.0/5 (348 download)

DOWNLOAD NOW!


Book Synopsis The Navier-Stokes Equations by : Hermann Sohr

Download or read book The Navier-Stokes Equations written by Hermann Sohr and published by Springer Science & Business Media. This book was released on 2012-12-13 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: The primary objective of this monograph is to develop an elementary and se- containedapproachtothemathematicaltheoryofaviscousincompressible?uid n in a domain ? of the Euclidean spaceR , described by the equations of Navier- Stokes. The book is mainly directed to students familiar with basic functional analytic tools in Hilbert and Banach spaces. However, for readers’ convenience, in the ?rst two chapters we collect, without proof some fundamental properties of Sobolev spaces, distributions, operators, etc. Another important objective is to formulate the theory for a completely general domain ?. In particular, the theory applies to arbitrary unbounded, non-smooth domains. For this reason, in the nonlinear case, we have to restrict ourselves to space dimensions n=2,3 that are also most signi?cant from the physical point of view. For mathematical generality, we will develop the l- earized theory for all n? 2. Although the functional-analytic approach developed here is, in principle, known to specialists, its systematic treatment is not available, and even the diverseaspectsavailablearespreadoutintheliterature.However,theliterature is very wide, and I did not even try to include a full list of related papers, also because this could be confusing for the student. In this regard, I would like to apologize for not quoting all the works that, directly or indirectly, have inspired this monograph.

Handbook of Differential Equations: Stationary Partial Differential Equations

Download Handbook of Differential Equations: Stationary Partial Differential Equations PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0080495060
Total Pages : 736 pages
Book Rating : 4.0/5 (84 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Differential Equations: Stationary Partial Differential Equations by : Michel Chipot

Download or read book Handbook of Differential Equations: Stationary Partial Differential Equations written by Michel Chipot and published by Elsevier. This book was released on 2004-07-06 with total page 736 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book could be a good companion for any graduate student in partial differential equations or in applied mathematics. Each chapter brings indeed new ideas and new techniques which can be used in these fields. The differents chapters can be read independently and are of great pedagogical value. The advanced researcher will find along the book the most recent achievements in various fields. - Independent chapters - Most recent advances in each fields - Hight didactic quality - Self contained - Excellence of the contributors - Wide range of topics

Navier–Stokes Equations

Download Navier–Stokes Equations PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 331927760X
Total Pages : 395 pages
Book Rating : 4.3/5 (192 download)

DOWNLOAD NOW!


Book Synopsis Navier–Stokes Equations by : Grzegorz Łukaszewicz

Download or read book Navier–Stokes Equations written by Grzegorz Łukaszewicz and published by Springer. This book was released on 2016-04-12 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is devoted to the study of the Navier–Stokes equations, providing a comprehensive reference for a range of applications: from advanced undergraduate students to engineers and professional mathematicians involved in research on fluid mechanics, dynamical systems, and mathematical modeling. Equipped with only a basic knowledge of calculus, functional analysis, and partial differential equations, the reader is introduced to the concept and applications of the Navier–Stokes equations through a series of fully self-contained chapters. Including lively illustrations that complement and elucidate the text, and a collection of exercises at the end of each chapter, this book is an indispensable, accessible, classroom-tested tool for teaching and understanding the Navier–Stokes equations. Incompressible Navier–Stokes equations describe the dynamic motion (flow) of incompressible fluid, the unknowns being the velocity and pressure as functions of location (space) and time variables. A solution to these equations predicts the behavior of the fluid, assuming knowledge of its initial and boundary states. These equations are one of the most important models of mathematical physics: although they have been a subject of vivid research for more than 150 years, there are still many open problems due to the nature of nonlinearity present in the equations. The nonlinear convective term present in the equations leads to phenomena such as eddy flows and turbulence. In particular, the question of solution regularity for three-dimensional problem was appointed by Clay Institute as one of the Millennium Problems, the key problems in modern mathematics. The problem remains challenging and fascinating for mathematicians, and the applications of the Navier–Stokes equations range from aerodynamics (drag and lift forces), to the design of watercraft and hydroelectric power plants, to medical applications such as modeling the flow of blood in the circulatory system.

Mathematics of Complexity and Dynamical Systems

Download Mathematics of Complexity and Dynamical Systems PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461418054
Total Pages : 1885 pages
Book Rating : 4.4/5 (614 download)

DOWNLOAD NOW!


Book Synopsis Mathematics of Complexity and Dynamical Systems by : Robert A. Meyers

Download or read book Mathematics of Complexity and Dynamical Systems written by Robert A. Meyers and published by Springer Science & Business Media. This book was released on 2011-10-05 with total page 1885 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics of Complexity and Dynamical Systems is an authoritative reference to the basic tools and concepts of complexity, systems theory, and dynamical systems from the perspective of pure and applied mathematics. Complex systems are systems that comprise many interacting parts with the ability to generate a new quality of collective behavior through self-organization, e.g. the spontaneous formation of temporal, spatial or functional structures. These systems are often characterized by extreme sensitivity to initial conditions as well as emergent behavior that are not readily predictable or even completely deterministic. The more than 100 entries in this wide-ranging, single source work provide a comprehensive explication of the theory and applications of mathematical complexity, covering ergodic theory, fractals and multifractals, dynamical systems, perturbation theory, solitons, systems and control theory, and related topics. Mathematics of Complexity and Dynamical Systems is an essential reference for all those interested in mathematical complexity, from undergraduate and graduate students up through professional researchers.

Geometric Properties for Parabolic and Elliptic PDE's

Download Geometric Properties for Parabolic and Elliptic PDE's PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030733637
Total Pages : 303 pages
Book Rating : 4.0/5 (37 download)

DOWNLOAD NOW!


Book Synopsis Geometric Properties for Parabolic and Elliptic PDE's by : Vincenzo Ferone

Download or read book Geometric Properties for Parabolic and Elliptic PDE's written by Vincenzo Ferone and published by Springer Nature. This book was released on 2021-06-12 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains the contributions resulting from the 6th Italian-Japanese workshop on Geometric Properties for Parabolic and Elliptic PDEs, which was held in Cortona (Italy) during the week of May 20–24, 2019. This book will be of great interest for the mathematical community and in particular for researchers studying parabolic and elliptic PDEs. It covers many different fields of current research as follows: convexity of solutions to PDEs, qualitative properties of solutions to parabolic equations, overdetermined problems, inverse problems, Brunn-Minkowski inequalities, Sobolev inequalities, and isoperimetric inequalities.

Attractors of Evolution Equations

Download Attractors of Evolution Equations PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0080875467
Total Pages : 543 pages
Book Rating : 4.0/5 (88 download)

DOWNLOAD NOW!


Book Synopsis Attractors of Evolution Equations by : A.V. Babin

Download or read book Attractors of Evolution Equations written by A.V. Babin and published by Elsevier. This book was released on 1992-03-09 with total page 543 pages. Available in PDF, EPUB and Kindle. Book excerpt: Problems, ideas and notions from the theory of finite-dimensional dynamical systems have penetrated deeply into the theory of infinite-dimensional systems and partial differential equations. From the standpoint of the theory of the dynamical systems, many scientists have investigated the evolutionary equations of mathematical physics. Such equations include the Navier-Stokes system, magneto-hydrodynamics equations, reaction-diffusion equations, and damped semilinear wave equations. Due to the recent efforts of many mathematicians, it has been established that the attractor of the Navier-Stokes system, which attracts (in an appropriate functional space) as t - ∞ all trajectories of this system, is a compact finite-dimensional (in the sense of Hausdorff) set. Upper and lower bounds (in terms of the Reynolds number) for the dimension of the attractor were found. These results for the Navier-Stokes system have stimulated investigations of attractors of other equations of mathematical physics. For certain problems, in particular for reaction-diffusion systems and nonlinear damped wave equations, mathematicians have established the existence of the attractors and their basic properties; furthermore, they proved that, as t - +∞, an infinite-dimensional dynamics described by these equations and systems uniformly approaches a finite-dimensional dynamics on the attractor U, which, in the case being considered, is the union of smooth manifolds. This book is devoted to these and several other topics related to the behaviour as t - ∞ of solutions for evolutionary equations.

Numerical Mathematics and Advanced Applications ENUMATH 2019

Download Numerical Mathematics and Advanced Applications ENUMATH 2019 PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030558746
Total Pages : 1185 pages
Book Rating : 4.0/5 (35 download)

DOWNLOAD NOW!


Book Synopsis Numerical Mathematics and Advanced Applications ENUMATH 2019 by : Fred J. Vermolen

Download or read book Numerical Mathematics and Advanced Applications ENUMATH 2019 written by Fred J. Vermolen and published by Springer Nature. This book was released on 2021-04-30 with total page 1185 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gathers outstanding papers presented at the European Conference on Numerical Mathematics and Advanced Applications (ENUMATH 2019). The conference was organized by Delft University of Technology and was held in Egmond aan Zee, the Netherlands, from September 30 to October 4, 2019. Leading experts in the field presented the latest results and ideas regarding the design, implementation and analysis of numerical algorithms, as well as their applications to relevant societal problems. ENUMATH is a series of conferences held every two years to provide a forum for discussing basic aspects and new trends in numerical mathematics and scientific and industrial applications, all examined at the highest level of international expertise. The first ENUMATH was held in Paris in 1995, with successive installments at various sites across Europe, including Heidelberg (1997), Jyvaskyla (1999), lschia Porto (2001), Prague (2003), Santiago de Compostela (2005), Graz (2007), Uppsala (2009), Leicester (2011), Lausanne (2013), Ankara (2015) and Bergen (2017).

Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2020+1

Download Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2020+1 PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031204328
Total Pages : 571 pages
Book Rating : 4.0/5 (312 download)

DOWNLOAD NOW!


Book Synopsis Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2020+1 by : Jens M. Melenk

Download or read book Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2020+1 written by Jens M. Melenk and published by Springer Nature. This book was released on 2023-06-30 with total page 571 pages. Available in PDF, EPUB and Kindle. Book excerpt: The volume features high-quality papers based on the presentations at the ICOSAHOM 2020+1 on spectral and high order methods. The carefully reviewed articles cover state of the art topics in high order discretizations of partial differential equations. The volume presents a wide range of topics including the design and analysis of high order methods, the development of fast solvers on modern computer architecture, and the application of these methods in fluid and structural mechanics computations.

Boundary Value Problems of Mathematical Physics

Download Boundary Value Problems of Mathematical Physics PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 9780821831274
Total Pages : 282 pages
Book Rating : 4.8/5 (312 download)

DOWNLOAD NOW!


Book Synopsis Boundary Value Problems of Mathematical Physics by : O. A. Ladyzhenskaya

Download or read book Boundary Value Problems of Mathematical Physics written by O. A. Ladyzhenskaya and published by American Mathematical Soc.. This book was released on 1989 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Modeling in Fluid Mechanics

Download Modeling in Fluid Mechanics PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1351029053
Total Pages : 495 pages
Book Rating : 4.3/5 (51 download)

DOWNLOAD NOW!


Book Synopsis Modeling in Fluid Mechanics by : Igor Gaissinski

Download or read book Modeling in Fluid Mechanics written by Igor Gaissinski and published by CRC Press. This book was released on 2018-06-13 with total page 495 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is dedicated to modeling in fluid mechanics and is divided into four chapters, which contain a significant number of useful exercises with solutions. The authors provide relatively complete references on relevant topics in the bibliography at the end of each chapter.

Advanced Computing in Industrial Mathematics

Download Advanced Computing in Industrial Mathematics PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319655302
Total Pages : 224 pages
Book Rating : 4.3/5 (196 download)

DOWNLOAD NOW!


Book Synopsis Advanced Computing in Industrial Mathematics by : Krassimir Georgiev

Download or read book Advanced Computing in Industrial Mathematics written by Krassimir Georgiev and published by Springer. This book was released on 2017-10-25 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents recent research on Advanced Computing in Industrial Mathematics, which is one of the most prominent interdisciplinary areas, bringing together mathematics, computer science, scientific computations, engineering, physics, chemistry, medicine, etc. Further, the book presents the major tools used in Industrial Mathematics, which are based on mathematical models, and the corresponding computer codes, which are used to perform virtual experiments to obtain new data or to better understand previous experimental findings. The book gathers the peer-reviewed papers presented at the 11th Annual Meeting of the Bulgarian Section of SIAM (BGSIAM), from December 20 to 22, 2016 in Sofia, Bulgaria.

Implementation of Finite Element Methods for Navier-Stokes Equations

Download Implementation of Finite Element Methods for Navier-Stokes Equations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642870473
Total Pages : 168 pages
Book Rating : 4.6/5 (428 download)

DOWNLOAD NOW!


Book Synopsis Implementation of Finite Element Methods for Navier-Stokes Equations by : F. Thomasset

Download or read book Implementation of Finite Element Methods for Navier-Stokes Equations written by F. Thomasset and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt: In structure mechanics analysis, finite element methods are now well estab lished and well documented techniques; their advantage lies in a higher flexibility, in particular for: (i) The representation of arbitrary complicated boundaries; (ii) Systematic rules for the developments of stable numerical schemes ap proximating mathematically wellposed problems, with various types of boundary conditions. On the other hand, compared to finite difference methods, this flexibility is paid by: an increased programming complexity; additional storage require ment. The application of finite element methods to fluid mechanics has been lagging behind and is relatively recent for several types of reasons: (i) Historical reasons: the early methods were invented by engineers for the analysis of torsion, flexion deformation of bearns, plates, shells, etc ... (see the historics in Strang and Fix (1972) or Zienckiewicz (1977». (ii) Technical reasons: fluid flow problems present specific difficulties: strong gradients,l of the velocity or temperature for instance, may occur which a finite mesh is unable to properly represent; a remedy lies in the various upwind finite element schemes which recently turned up, and which are reviewed in chapter 2 (yet their effect is just as controversial as in finite differences). Next, waves can propagate (e.g. in ocean dynamics with shallowwaters equations) which will be falsely distorted by a finite non regular mesh, as Kreiss (1979) pointed out. We are concerned in this course with the approximation of incompressible, viscous, Newtonian fluids, i.e. governed by N avier Stokes equations.

Solving Problems in Multiply Connected Domains

Download Solving Problems in Multiply Connected Domains PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 1611976154
Total Pages : 457 pages
Book Rating : 4.6/5 (119 download)

DOWNLOAD NOW!


Book Synopsis Solving Problems in Multiply Connected Domains by : Darren Crowdy

Download or read book Solving Problems in Multiply Connected Domains written by Darren Crowdy and published by SIAM. This book was released on 2020-04-20 with total page 457 pages. Available in PDF, EPUB and Kindle. Book excerpt: Whenever two or more objects or entities—be they bubbles, vortices, black holes, magnets, colloidal particles, microorganisms, swimming bacteria, Brownian random walkers, airfoils, turbine blades, electrified drops, magnetized particles, dislocations, cracks, or heterogeneities in an elastic solid—interact in some ambient medium, they make holes in that medium. Such holey regions with interacting entities are called multiply connected. This book describes a novel mathematical framework for solving problems in two-dimensional, multiply connected regions. The framework is built on a central theoretical concept: the prime function, whose significance for the applied sciences, especially for solving problems in multiply connected domains, has been missed until recent work by the author. This monograph is a one-of-a-kind treatise on the prime function associated with multiply connected domains and how to use it in applications. The book contains many results familiar in the simply connected, or single-entity, case that are generalized naturally to any number of entities, in many instances for the first time. Solving Problems in Multiply Connected Domains is aimed at applied and pure mathematicians, engineers, physicists, and other natural scientists; the framework it describes finds application in a diverse array of contexts. The book provides a rich source of project material for undergraduate and graduate courses in the applied sciences and could serve as a complement to standard texts on advanced calculus, potential theory, partial differential equations and complex analysis, and as a supplement to texts on applied mathematical methods in engineering and science.

Handbook of Mathematical Fluid Dynamics

Download Handbook of Mathematical Fluid Dynamics PDF Online Free

Author :
Publisher : Gulf Professional Publishing
ISBN 13 : 008053354X
Total Pages : 627 pages
Book Rating : 4.0/5 (85 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Mathematical Fluid Dynamics by : S. Friedlander

Download or read book Handbook of Mathematical Fluid Dynamics written by S. Friedlander and published by Gulf Professional Publishing. This book was released on 2003-03-27 with total page 627 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook of Mathematical Fluid Dynamics is a compendium of essays that provides a survey of the major topics in the subject. Each article traces developments, surveys the results of the past decade, discusses the current state of knowledge and presents major future directions and open problems. Extensive bibliographic material is provided. The book is intended to be useful both to experts in the field and to mathematicians and other scientists who wish to learn about or begin research in mathematical fluid dynamics. The Handbook illuminates an exciting subject that involves rigorous mathematical theory applied to an important physical problem, namely the motion of fluids.