Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Multiscale X Ray Structural Analysis Of Cardiac Cells And Tissues
Download Multiscale X Ray Structural Analysis Of Cardiac Cells And Tissues full books in PDF, epub, and Kindle. Read online Multiscale X Ray Structural Analysis Of Cardiac Cells And Tissues ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Multiscale X-ray Structural Analysis of Cardiac Cells and Tissues by : Marius Reichardt
Download or read book Multiscale X-ray Structural Analysis of Cardiac Cells and Tissues written by Marius Reichardt and published by Universitätsverlag Göttingen. This book was released on 2022 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: The cardiac function relies on an intricate molecular and cellular three-dimensional (3d) architecture of a complex, dense and co-dependent cellular network. Structural alterations of the cardiac structure can affect its essential function and lead to severe dysfunction of the organ. Cardiovascular diseases are the main cause of death worldwide with a rising incidence. However, it is not possible to give a generalized answer how the heart is formed. Up to now, cardiac structure as well as physiologic and disease-related tissue alterations of the tissue are mainly investigated by established 2d imaging methods such as optical microscopy or electron microscopy. This work presents a multiscale and multimodal X-ray imaging approach, which allows to probe the heart structure from the scale of entire intact murine hearts to the molecular organisation of the sarcomer structure. While the molecular structure of the actomyosin complex is probed by scanning X-ray diffraction, the 3d arrangement of the cellular network is investigated by propagation-based X-ray phase-contrast tomography. In this context, the concept of 3d virtual histology of cardiac tissue by X-ray phase-contrast tomography using laboratory sources as well as highly coherent synchrotron radiation is being further developed.
Book Synopsis Multiscale X-Ray Analysis of Biological Cells and Tissues by Scanning Diffraction and Coherent Imaging by : Jan-David Nicolas
Download or read book Multiscale X-Ray Analysis of Biological Cells and Tissues by Scanning Diffraction and Coherent Imaging written by Jan-David Nicolas and published by Göttingen University Press. This book was released on 2019 with total page 183 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding the intricate details of muscle contraction has a long-standing tradition in biophysical research. X-ray diffraction has been one of the key techniques to resolve the nanometer-sized molecular machinery involved in force generation. Modern, powerful X-ray sources now provide billions of X-ray photons in time intervals as short as microseconds, enabling fast time-resolved experiments that shed further light on the complex relationship between muscle structure and function. Another approach harnesses this power by repeatedly performing such an experiment at different locations in a sample. With millions of repeated exposures in a single experiment, X-ray diffraction can seamlessly be turned into a raster imaging method, neatly combining real- and reciprocal space information. This thesis has focused on the advancement of this scanning scheme and its application to soft biological tissue, in particular muscle tissue. Special emphasis was placed on the extraction of meaningful, quantitative structural parameters such as the interfilament distance of the actomyosin lattice in cardiac muscle. The method was further adapted to image biological samples on a range of scales, from isolated cells to millimeter-sized tissue sections. Due to the ‘photon-hungry’ nature of the technique, its full potential is often exploited in combination with full-field imaging techniques. From the vast set of microscopic tools available, coherent full-field X-ray imaging has proven to be particularly useful. This multimodal approach allows to correlate two- and three-dimensional images of cells and tissue with diffraction maps of structure parameters. With the set of tools developed in this thesis, scanning X-ray diffraction can now be efficiently used for the structural analysis of soft biological tissues with overarching future applications in biophysical and biomedical research.
Book Synopsis Multiscale Modeling in Biomechanics and Mechanobiology by : Suvranu De
Download or read book Multiscale Modeling in Biomechanics and Mechanobiology written by Suvranu De and published by Springer. This book was released on 2014-10-10 with total page 287 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presenting a state-of-the-art overview of theoretical and computational models that link characteristic biomechanical phenomena, this book provides guidelines and examples for creating multiscale models in representative systems and organisms. It develops the reader's understanding of and intuition for multiscale phenomena in biomechanics and mechanobiology, and introduces a mathematical framework and computational techniques paramount to creating predictive multiscale models. Biomechanics involves the study of the interactions of physical forces with biological systems at all scales – including molecular, cellular, tissue and organ scales. The emerging field of mechanobiology focuses on the way that cells produce and respond to mechanical forces – bridging the science of mechanics with the disciplines of genetics and molecular biology. Linking disparate spatial and temporal scales using computational techniques is emerging as a key concept in investigating some of the complex problems underlying these disciplines. Providing an invaluable field manual for graduate students and researchers of theoretical and computational modelling in biology, this book is also intended for readers interested in biomedical engineering, applied mechanics and mathematical biology.
Book Synopsis Mechanobiology in Health and Disease by : Stefaan Verbruggen
Download or read book Mechanobiology in Health and Disease written by Stefaan Verbruggen and published by Academic Press. This book was released on 2018-08-09 with total page 530 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mechanobiology in Health and Disease brings together contributions from leading biologists, clinicians, physicists and engineers in one convenient volume, providing a unified source of information for researchers in this highly multidisciplinary area. Opening chapters provide essential background information on cell mechanotransduction and essential mechanobiology methods and techniques. Other sections focus on the study of mechanobiology in healthy systems, including bone, tendons, muscles, blood vessels, the heart and the skin, as well as mechanobiology studies of pregnancy. Final chapters address the nascent area of mechanobiology in disease, from the study of bone conditions, skin diseases and heart diseases to cancer. A discussion of future perspectives for research completes each chapter in the volume. This is a timely resource for both early-career and established researchers working on mechanobiology. - Provides an essential digest of primary research from many fields and disciplines in one convenient volume - Covers both experimental approaches and descriptions of mechanobiology problems from mathematical and numerical perspectives - Addresses the hot topic of mechanobiology in disease, a particularly dynamic field of frontier science
Book Synopsis Functional Imaging and Modelling of the Heart by : Mihaela Pop
Download or read book Functional Imaging and Modelling of the Heart written by Mihaela Pop and published by Springer. This book was released on 2017-05-22 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 9th International Conference on Functional Imaging and Modeling of the Heart, held in Toronto, ON, Canada, in June 2017. The 48 revised full papers were carefully reviewed and selected from 63 submissions. The focus of the papers is on following topics: novel imaging and analysis methods for myocardial tissue characterization and remodeling; advanced cardiac image analysis tools for diagnostic and interventions; electrophysiology: mapping and biophysical modeling; biomechanics and flow: modeling and tissue property measurements.
Book Synopsis Molecular, Cellular, and Tissue Engineering by : Joseph D. Bronzino
Download or read book Molecular, Cellular, and Tissue Engineering written by Joseph D. Bronzino and published by CRC Press. This book was released on 2018-10-08 with total page 1830 pages. Available in PDF, EPUB and Kindle. Book excerpt: Known as the bible of biomedical engineering, The Biomedical Engineering Handbook, Fourth Edition, sets the standard against which all other references of this nature are measured. As such, it has served as a major resource for both skilled professionals and novices to biomedical engineering. Molecular, Cellular, and Tissue Engineering, the fourth volume of the handbook, presents material from respected scientists with diverse backgrounds in molecular biology, transport phenomena, physiological modeling, tissue engineering, stem cells, drug delivery systems, artificial organs, and personalized medicine. More than three dozen specific topics are examined, including DNA vaccines, biomimetic systems, cardiovascular dynamics, biomaterial scaffolds, cell mechanobiology, synthetic biomaterials, pluripotent stem cells, hematopoietic stem cells, mesenchymal stem cells, nanobiomaterials for tissue engineering, biomedical imaging of engineered tissues, gene therapy, noninvasive targeted protein and peptide drug delivery, cardiac valve prostheses, blood substitutes, artificial skin, molecular diagnostics in personalized medicine, and bioethics.
Book Synopsis Solid (Bio)mechanics: Challenges of the Next Decade by : Gerhard Sommer
Download or read book Solid (Bio)mechanics: Challenges of the Next Decade written by Gerhard Sommer and published by Springer Nature. This book was released on 2022-06-14 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a comprehensive and timely overview of the latest developments in the field of biomechanics and extensive knowledge of tissue structure, function, and modeling. Gathering chapters written by authoritative scientists, it reports on a range of continuum and computational models of solids, and related experimental works, for biomechanical applications. It discusses cutting-edge advances such as constitutive modeling and computational simulation of biological tissues and organs under physiological and pathological conditions, and their mechanical characterization. It covers innovative studies on arteries, heart, valvular tissue, and thrombus, brain tumor, muscle, liver, kidney, and stomach, among others. Written in honor of Professor Gerhard A. Holzapfel, the book provides specialized readers with a thorough and timely overview of different types of modeling in biomechanics, and current knowledge about biological structures and function.
Book Synopsis Coherent X-Ray Optics by : David Paganin
Download or read book Coherent X-Ray Optics written by David Paganin and published by Oxford University Press on Demand. This book was released on 2006-01-12 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: X-ray optics is undergoing a renaissance, which may be paralleled to that experienced by visible-light optics following the invention of the laser. The associated surge of activity in "coherent" x-ray optics has been documented in this monograph, the first of its type in the field.
Book Synopsis Approximate Analytical Methods for Solving Ordinary Differential Equations by : T.S.L Radhika
Download or read book Approximate Analytical Methods for Solving Ordinary Differential Equations written by T.S.L Radhika and published by CRC Press. This book was released on 2014-10-31 with total page 584 pages. Available in PDF, EPUB and Kindle. Book excerpt: Approximate Analytical Methods for Solving Ordinary Differential Equations (ODEs) is the first book to present all of the available approximate methods for solving ODEs, eliminating the need to wade through multiple books and articles. It covers both well-established techniques and recently developed procedures, including the classical series solution method, diverse perturbation methods, pioneering asymptotic methods, and the latest homotopy methods. The book is suitable not only for mathematicians and engineers but also for biologists, physicists, and economists. It gives a complete description of the methods without going deep into rigorous mathematical aspects. Detailed examples illustrate the application of the methods to solve real-world problems. The authors introduce the classical power series method for solving differential equations before moving on to asymptotic methods. They next show how perturbation methods are used to understand physical phenomena whose mathematical formulation involves a perturbation parameter and explain how the multiple-scale technique solves problems whose solution cannot be completely described on a single timescale. They then describe the Wentzel, Kramers, and Brillown (WKB) method that helps solve both problems that oscillate rapidly and problems that have a sudden change in the behavior of the solution function at a point in the interval. The book concludes with recent nonperturbation methods that provide solutions to a much wider class of problems and recent analytical methods based on the concept of homotopy of topology.
Book Synopsis Modern Diagnostic X-Ray Sources by : Rolf Behling
Download or read book Modern Diagnostic X-Ray Sources written by Rolf Behling and published by CRC Press. This book was released on 2021-04-18 with total page 413 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gives an up-to-date summary of X-ray source design for applications in modern diagnostic medical imaging. Lays a sound groundwork for education and advanced training in the physics of X-ray production and X-ray interactions with matter. Includes a historical overview of X-ray tube and generator development, including key achievements leading up to the current technological and economic state of the field.
Book Synopsis Tissue Engineering by : John P. Fisher
Download or read book Tissue Engineering written by John P. Fisher and published by CRC Press. This book was released on 2012-12-11 with total page 771 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tissue engineering research continues to captivate the interest of researchers and the general public alike. Popular media outlets like The New York Times, Time, and Wired continue to engage a wide audience and foster excitement for the field as regenerative medicine inches toward becoming a clinical reality. Putting the numerous advances in the fi
Book Synopsis Fractal and Multifractal Facets in the Structure and Dynamics of Physiological Systems and Applications to Homeostatic Control, Disease Diagnosis and Integrated Cyber-Physical Platforms by : Paul Bogdan
Download or read book Fractal and Multifractal Facets in the Structure and Dynamics of Physiological Systems and Applications to Homeostatic Control, Disease Diagnosis and Integrated Cyber-Physical Platforms written by Paul Bogdan and published by Frontiers Media SA. This book was released on 2020-06-25 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: Widespread chronic diseases (e.g., heart diseases, diabetes and its complications, stroke, cancer, brain diseases) constitute a significant cause of rising healthcare costs and pose a significant burden on quality-of-life for many individuals. Despite the increased need for smart healthcare sensing systems that monitor / measure patients’ body balance, there is no coherent theory that facilitates the modeling of human physiological processes and the design and optimization of future healthcare cyber-physical systems (HCPS). The HCPS are expected to mine the patient’s physiological state based on available continuous sensing, quantify risk indices corresponding to the onset of abnormality, signal the need for critical medical intervention in real-time by communicating patient’s medical information via a network from individual to hospital, and most importantly control (actuate) vital health signals (e.g., cardiac pacing, insulin level, blood pressure) within personalized homeostasis. To prevent health complications, maintain good health and/or avoid fatal conditions calls for a cross-disciplinary approach to HCPS design where recent statistical-physics inspired discoveries done by collaborations between physicists and physicians are shared and enriched by applied mathematicians, control theorists and bioengineers. This critical and urgent multi-disciplinary approach has to unify the current state of knowledge and address the following fundamental challenges: One fundamental challenge is represented by the need to mine and understand the complexity of the structure and dynamics of the physiological systems in healthy homeostasis and associated with a disease (such as diabetes). Along the same lines, we need rigorous mathematical techniques for identifying the interactions between integrated physiologic systems and understanding their role within the overall networking architecture of healthy dynamics. Another fundamental challenge calls for a deeper understanding of stochastic feedback and variability in biological systems and physiological processes, in particular, and for deciphering their implications not only on how to mathematically characterize homeostasis, but also on defining new control strategies that are accounting for intra- and inter-patient specificity – a truly mathematical approach to personalized medicine. Numerous recent studies have demonstrated that heart rate variability, blood glucose, neural signals and other interdependent physiological processes demonstrate fractal and non-stationary characteristics. Exploiting statistical physics concepts, numerous recent research studies demonstrated that healthy human physiological processes exhibit complex critical phenomena with deep implications for how homeostasis should be defined and how control strategies should be developed when prolonged abnormal deviations are observed. In addition, several efforts have tried to connect these fractal characteristics with new optimal control strategies that implemented in medical devices such as pacemakers and artificial pancreas could improve the efficiency of medical therapies and the quality-of-life of patients but neglecting the overall networking architecture of human physiology. Consequently, rigorously analyzing the complexity and dynamics of physiological processes (e.g., blood glucose and its associated implications and interdependencies with other physiological processes) represents a fundamental step towards providing a quantifiable (mathematical) definition of homeostasis in the context of critical phenomena, understanding the onset of chronic diseases, predicting deviations from healthy homeostasis and developing new more efficient medical therapies that carefully account for the physiological complexity, intra- and inter-patient variability, rather than ignoring it. This Research Topic aims to open a synergetic and timely effort between physicians, physicists, applied mathematicians, signal processing, bioengineering and biomedical experts to organize the state of knowledge in mining the complexity of physiological systems and their implications for constructing more accurate mathematical models and designing QoL-aware control strategies implemented in the new generation of HCPS devices. By bringing together multi-disciplinary researchers seeking to understand the many aspects of human physiology and its complexity, we aim at enabling a paradigm shift in designing future medical devices that translates mathematical characteristics in predictable mathematical models quantifying not only the degree of homeostasis, but also providing fundamentally new control strategies within the personalized medicine era.
Book Synopsis Root Engineering by : Asunción Morte
Download or read book Root Engineering written by Asunción Morte and published by Springer Science & Business Media. This book was released on 2014-04-12 with total page 486 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume illustrates the complex root system, including the various essential roles of roots as well as their interaction with diverse microorganisms localized in or near the root system. Following initial chapters describing the anatomy and architecture as well as the growth and development of root systems, subsequent chapters focus on the various types of root symbiosis with bacteria and fungi in the rhizosphere. A third section covers the physiological strategies of roots, such as nitrate assimilation, aquaporins, the role of roots in plant defense responses and in response to droughts and salinity changes. The book’s final chapters discuss the prospects of applied engineering of roots, i.e., inventing new root structures or functions through genetic modification, but also with conventional breeding and manipulation of root symbionts. The budding field of root engineering is expected to promote a second green revolution.
Book Synopsis The Optical Clearing Method by : Luís Manuel Couto Oliveira
Download or read book The Optical Clearing Method written by Luís Manuel Couto Oliveira and published by Springer Nature. This book was released on 2019-11-27 with total page 183 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the Optical Immersion Clearing method and its application to acquire information with importance for clinical practice and various fields of biomedical engineering. The method has proved to be a reliable means of increasing tissue transparency, allowing the investigator or surgeon to reach deeper tissue layers for improved imaging and laser surgery. This result is obtained by partial replacement of tissue water with an active optical clearing agent (OCA) that has a higher refractive index and is a better match for the refractive index of other tissue components. Natural tissue scattering is thereby reduced. An exponential increase in research using this method has occurred in recent years, and new applications have emerged, both in clinical practice and in some areas of biomedical engineering. Recent research has revealed that treating ex vivo tissues with solutions containing active OCAs in different concentrations produces experimental data to characterize drug delivery or to discriminate between normal and pathological tissues. The obtained drug diffusion properties are of interest for the pharmaceutical and organ preservation industry. Similar data can be estimated with particular interest for food preservation. The free water content evaluation is also of great interest since it facilitates the characterization of tissues to discriminate pathologies. An interesting new application that is presented in the book regards the creation of two optical windows in the ultraviolet spectral range through the application of the immersion method. These induced transparency windows open the possibility to diagnose and treat pathologies with ultraviolet light. This book presents photographs from the tissues we have studied and figures that represent the experimental setups used. Graphs and tables are also included to show the numerical results obtained in the sequential calculations performed.
Book Synopsis Fibrous Assemblies: From Synthesis and Nanostructure Characterization to Materials Development and Application by : Cinzia Giannini
Download or read book Fibrous Assemblies: From Synthesis and Nanostructure Characterization to Materials Development and Application written by Cinzia Giannini and published by Frontiers Media SA. This book was released on 2021-12-01 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Cardiovascular Regenerative Medicine by : Vahid Serpooshan
Download or read book Cardiovascular Regenerative Medicine written by Vahid Serpooshan and published by Springer. This book was released on 2019-06-29 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a comprehensive and up-to-date resource on the use of regenerative medicine for the treatment of cardiovascular disease. It provides a much-needed review of the rapid development and evolution of bio-fabrication techniques to engineer cardiovascular tissues as well as their use in clinical settings. The book incorporates recent advances in the biology, biomaterial design, and manufacturing of bioengineered cardiovascular tissue with their clinical applications to bridge the basic sciences to current and future cardiovascular treatment. The book begins with an examination of state-of-the-art cellular, biomaterial, and macromolecular technologies for the repair and regeneration of diseased heart tissue. It discusses advances in nanotechnology and bioengineering of cardiac microtissues using acoustic assembly. Subsequent chapters explore the clinical applications and translational potential of current technologies such as cardiac patch-based treatments, cell-based regenerative therapies, and injectable hydrogels. The book examines how these methodologies are used to treat a variety of cardiovascular diseases including myocardial infarction, congenital heart disease, and ischemic heart injuries. Finally, the volume concludes with a summary of the most prominent challenges and perspectives on the field of cardiovascular tissue engineering and clinical cardiovascular regenerative medicine. Cardiovascular Regenerative Medicine is an essential resource for physicians, residents, fellows, and medical students in cardiology and cardiovascular regeneration as well as clinical and basic researchers in bioengineering, nanomaterial and technology, and cardiovascular biology.
Book Synopsis Non-Invasive Health Systems based on Advanced Biomedical Signal and Image Processing by : Adel Al-Jumaily
Download or read book Non-Invasive Health Systems based on Advanced Biomedical Signal and Image Processing written by Adel Al-Jumaily and published by CRC Press. This book was released on 2024-02-29 with total page 475 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains up-to-date noninvasive monitoring and diagnosing systems closely developed by a set of scientists, engineers, and physicians. The chapters are the results of different biomedical projects and theoretical studies that were coupled by simulations and real-world data. Non-Invasive Health Systems based on Advanced Biomedical Signal and Image Processing provides a multifaceted view of various biomedical and clinical approaches to health monitoring systems. The authors introduce advanced signal- and image-processing techniques as well as other noninvasive monitoring and diagnostic systems such as inertial sensors in wearable devices and novel algorithm-based hybrid learning systems for biosignal processing. The book includes a discussion of designing electronic circuits and systems for biomedical applications and analyzes several issues related to real-world data and how they relate to health technology including ECG signal monitoring and processing in the operating room. The authors also include detailed discussions of different systems for monitoring various conditions and diseases including sleep apnea, skin cancer, deep vein thrombosis, and prosthesis controls. This book is intended for a wide range of readers including scientists, researchers, physicians, and electronics and biomedical engineers. It will cover the gap between theory and real life applications.