Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Multiscale Methods For Fredholm Integral Equations
Download Multiscale Methods For Fredholm Integral Equations full books in PDF, epub, and Kindle. Read online Multiscale Methods For Fredholm Integral Equations ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Multiscale Methods for Fredholm Integral Equations by : Zhongying Chen
Download or read book Multiscale Methods for Fredholm Integral Equations written by Zhongying Chen and published by Cambridge University Press. This book was released on 2015-07-16 with total page 551 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents the state of the art in the study of fast multiscale methods for solving these equations based on wavelets.
Book Synopsis Volterra Integral Equations by : Hermann Brunner
Download or read book Volterra Integral Equations written by Hermann Brunner and published by Cambridge University Press. This book was released on 2017-01-20 with total page 405 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a comprehensive introduction to the theory of linear and nonlinear Volterra integral equations (VIEs), ranging from Volterra's fundamental contributions and the resulting classical theory to more recent developments that include Volterra functional integral equations with various kinds of delays, VIEs with highly oscillatory kernels, and VIEs with non-compact operators. It will act as a 'stepping stone' to the literature on the advanced theory of VIEs, bringing the reader to the current state of the art in the theory. Each chapter contains a large number of exercises, extending from routine problems illustrating or complementing the theory to challenging open research problems. The increasingly important role of VIEs in the mathematical modelling of phenomena where memory effects play a key role is illustrated with some 30 concrete examples, and the notes at the end of each chapter feature complementary references as a guide to further reading.
Book Synopsis Partial Differential Equation Methods for Image Inpainting by : Carola-Bibiane Schönlieb
Download or read book Partial Differential Equation Methods for Image Inpainting written by Carola-Bibiane Schönlieb and published by Cambridge University Press. This book was released on 2015-10-26 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is concerned with digital image processing techniques that use partial differential equations (PDEs) for the task of image 'inpainting', an artistic term for virtual image restoration or interpolation, whereby missing or occluded parts in images are completed based on information provided by intact parts. Computer graphic designers, artists and photographers have long used manual inpainting to restore damaged paintings or manipulate photographs. Today, mathematicians apply powerful methods based on PDEs to automate this task. This book introduces the mathematical concept of PDEs for virtual image restoration. It gives the full picture, from the first modelling steps originating in Gestalt theory and arts restoration to the analysis of resulting PDE models, numerical realisation and real-world application. This broad approach also gives insight into functional analysis, variational calculus, optimisation and numerical analysis and will appeal to researchers and graduate students in mathematics with an interest in image processing and mathematical analysis.
Book Synopsis Spaces of Measures and their Applications to Structured Population Models by : Christian Düll
Download or read book Spaces of Measures and their Applications to Structured Population Models written by Christian Düll and published by Cambridge University Press. This book was released on 2021-10-07 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Structured population models are transport-type equations often applied to describe evolution of heterogeneous populations of biological cells, animals or humans, including phenomena such as crowd dynamics or pedestrian flows. This book introduces the mathematical underpinnings of these applications, providing a comprehensive analytical framework for structured population models in spaces of Radon measures. The unified approach allows for the study of transport processes on structures that are not vector spaces (such as traffic flow on graphs) and enables the analysis of the numerical algorithms used in applications. Presenting a coherent account of over a decade of research in the area, the text includes appendices outlining the necessary background material and discusses current trends in the theory, enabling graduate students to jump quickly into research.
Book Synopsis Multivariate Approximation by : V. Temlyakov
Download or read book Multivariate Approximation written by V. Temlyakov and published by Cambridge University Press. This book was released on 2018-07-19 with total page 551 pages. Available in PDF, EPUB and Kindle. Book excerpt: Self-contained presentation of multivariate approximation from classical linear approximation to contemporary nonlinear approximation.
Book Synopsis Mathematical Modelling of the Human Cardiovascular System by : Alfio Quarteroni
Download or read book Mathematical Modelling of the Human Cardiovascular System written by Alfio Quarteroni and published by Cambridge University Press. This book was released on 2019-05-09 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical and numerical modelling of the human cardiovascular system has attracted remarkable research interest due to its intrinsic mathematical difficulty and the increasing impact of cardiovascular diseases worldwide. This book addresses the two principal components of the cardiovascular system: arterial circulation and heart function. It systematically describes all aspects of the problem, stating the basic physical principles, analysing the associated mathematical models that comprise PDE and ODE systems, reviewing sound and efficient numerical methods for their approximation, and simulating both benchmark problems and clinically inspired problems. Mathematical modelling itself imposes tremendous challenges, due to the amazing complexity of the cardiovascular system and the need for computational methods that are stable, reliable and efficient. The final part is devoted to control and inverse problems, including parameter estimation, uncertainty quantification and the development of reduced-order models that are important when solving problems with high complexity, which would otherwise be out of reach.
Author :I︠U︡riĭ Aleksandrovich Kuznet︠s︡ov Publisher :Cambridge University Press ISBN 13 :1108499678 Total Pages :423 pages Book Rating :4.1/5 (84 download)
Book Synopsis Numerical Bifurcation Analysis of Maps by : I︠U︡riĭ Aleksandrovich Kuznet︠s︡ov
Download or read book Numerical Bifurcation Analysis of Maps written by I︠U︡riĭ Aleksandrovich Kuznet︠s︡ov and published by Cambridge University Press. This book was released on 2019-03-28 with total page 423 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combines a systematic analysis of bifurcations of iterated maps with concrete MATLAB® implementations and applications.
Book Synopsis Symmetry, Phase Modulation and Nonlinear Waves by : Thomas J. Bridges
Download or read book Symmetry, Phase Modulation and Nonlinear Waves written by Thomas J. Bridges and published by Cambridge University Press. This book was released on 2017-07-03 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonlinear waves are pervasive in nature, but are often elusive when they are modelled and analysed. This book develops a natural approach to the problem based on phase modulation. It is both an elaboration of the use of phase modulation for the study of nonlinear waves and a compendium of background results in mathematics, such as Hamiltonian systems, symplectic geometry, conservation laws, Noether theory, Lagrangian field theory and analysis, all of which combine to generate the new theory of phase modulation. While the build-up of theory can be intensive, the resulting emergent partial differential equations are relatively simple. A key outcome of the theory is that the coefficients in the emergent modulation equations are universal and easy to calculate. This book gives several examples of the implications in the theory of fluid mechanics and points to a wide range of new applications.
Book Synopsis Operator-Adapted Wavelets, Fast Solvers, and Numerical Homogenization by : Houman Owhadi
Download or read book Operator-Adapted Wavelets, Fast Solvers, and Numerical Homogenization written by Houman Owhadi and published by Cambridge University Press. This book was released on 2019-10-24 with total page 491 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although numerical approximation and statistical inference are traditionally covered as entirely separate subjects, they are intimately connected through the common purpose of making estimations with partial information. This book explores these connections from a game and decision theoretic perspective, showing how they constitute a pathway to developing simple and general methods for solving fundamental problems in both areas. It illustrates these interplays by addressing problems related to numerical homogenization, operator adapted wavelets, fast solvers, and Gaussian processes. This perspective reveals much of their essential anatomy and greatly facilitates advances in these areas, thereby appearing to establish a general principle for guiding the process of scientific discovery. This book is designed for graduate students, researchers, and engineers in mathematics, applied mathematics, and computer science, and particularly researchers interested in drawing on and developing this interface between approximation, inference, and learning.
Book Synopsis Geometry of the Phase Retrieval Problem by : Alexander H. Barnett
Download or read book Geometry of the Phase Retrieval Problem written by Alexander H. Barnett and published by Cambridge University Press. This book was released on 2022-05-05 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a theoretical foundation and conceptual framework for the problem of recovering the phase of the Fourier transform.
Book Synopsis Integral Equation Methods in Scattering Theory by : David Colton
Download or read book Integral Equation Methods in Scattering Theory written by David Colton and published by SIAM. This book was released on 2013-11-15 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: This classic book provides a rigorous treatment of the Riesz?Fredholm theory of compact operators in dual systems, followed by a derivation of the jump relations and mapping properties of scalar and vector potentials in spaces of continuous and H?lder continuous functions. These results are then used to study scattering problems for the Helmholtz and Maxwell equations. Readers will benefit from a full discussion of the mapping properties of scalar and vector potentials in spaces of continuous and H?lder continuous functions, an in-depth treatment of the use of boundary integral equations to solve scattering problems for acoustic and electromagnetic waves, and an introduction to inverse scattering theory with an emphasis on the ill-posedness and nonlinearity of the inverse scattering problem.
Book Synopsis The Numerical Solution of Integral Equations of the Second Kind by : Kendall E. Atkinson
Download or read book The Numerical Solution of Integral Equations of the Second Kind written by Kendall E. Atkinson and published by Cambridge University Press. This book was released on 1997-06-28 with total page 572 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an extensive introduction to the numerical solution of a large class of integral equations.
Book Synopsis Analytical and Numerical Methods for Volterra Equations by : Peter Linz
Download or read book Analytical and Numerical Methods for Volterra Equations written by Peter Linz and published by SIAM. This book was released on 1985-01-01 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents an aspect of activity in integral equations methods for the solution of Volterra equations for those who need to solve real-world problems. Since there are few known analytical methods leading to closed-form solutions, the emphasis is on numerical techniques. The major points of the analytical methods used to study the properties of the solution are presented in the first part of the book. These techniques are important for gaining insight into the qualitative behavior of the solutions and for designing effective numerical methods. The second part of the book is devoted entirely to numerical methods. The author has chosen the simplest possible setting for the discussion, the space of real functions of real variables. The text is supplemented by examples and exercises.
Book Synopsis The Journal of Integral Equations and Applications by :
Download or read book The Journal of Integral Equations and Applications written by and published by . This book was released on 2016 with total page 628 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Wavelet Based Approximation Schemes for Singular Integral Equations by : Madan Mohan Panja
Download or read book Wavelet Based Approximation Schemes for Singular Integral Equations written by Madan Mohan Panja and published by CRC Press. This book was released on 2020-06-07 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many mathematical problems in science and engineering are defined by ordinary or partial differential equations with appropriate initial-boundary conditions. Among the various methods, boundary integral equation method (BIEM) is probably the most effective. It’s main advantage is that it changes a problem from its formulation in terms of unbounded differential operator to one for an integral/integro-differential operator, which makes the problem tractable from the analytical or numerical point of view. Basically, the review/study of the problem is shifted to a boundary (a relatively smaller domain), where it gives rise to integral equations defined over a suitable function space. Integral equations with singular kernels areamong the most important classes in the fields of elasticity, fluid mechanics, electromagnetics and other domains in applied science and engineering. With the advancesin computer technology, numerical simulations have become important tools in science and engineering. Several methods have been developed in numerical analysis for equations in mathematical models of applied sciences. Widely used methods include: Finite Difference Method (FDM), Finite Element Method (FEM), Finite Volume Method (FVM) and Galerkin Method (GM). Unfortunately, none of these are versatile. Each has merits and limitations. For example, the widely used FDM and FEM suffers from difficulties in problem solving when rapid changes appear in singularities. Even with the modern computing machines, analysis of shock-wave or crack propagations in three dimensional solids by the existing classical numerical schemes is challenging (computational time/memory requirements). Therefore, with the availability of faster computing machines, research into the development of new efficient schemes for approximate solutions/numerical simulations is an ongoing parallel activity. Numerical methods based on wavelet basis (multiresolution analysis) may be regarded as a confluence of widely used numerical schemes based on Finite Difference Method, Finite Element Method, Galerkin Method, etc. The objective of this monograph is to deal with numerical techniques to obtain (multiscale) approximate solutions in wavelet basis of different types of integral equations with kernels involving varieties of singularities appearing in the field of elasticity, fluid mechanics, electromagnetics and many other domains in applied science and engineering.
Download or read book 东北数学 written by and published by . This book was released on 2006 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Chebyshev and Fourier Spectral Methods by : John P. Boyd
Download or read book Chebyshev and Fourier Spectral Methods written by John P. Boyd and published by Courier Corporation. This book was released on 2013-06-05 with total page 690 pages. Available in PDF, EPUB and Kindle. Book excerpt: Completely revised text focuses on use of spectral methods to solve boundary value, eigenvalue, and time-dependent problems, but also covers Hermite, Laguerre, rational Chebyshev, sinc, and spherical harmonic functions, as well as cardinal functions, linear eigenvalue problems, matrix-solving methods, coordinate transformations, methods for unbounded intervals, spherical and cylindrical geometry, and much more. 7 Appendices. Glossary. Bibliography. Index. Over 160 text figures.